login
A237999
Number of partitions of 2^n into parts that are at most n with at least one part of each size.
6
0, 1, 1, 2, 9, 119, 4935, 596763, 211517867, 224663223092, 734961197081208, 7614278809664610952, 256261752606028225485183, 28642174350851846128820426827, 10830277060032417592098008847162727, 14068379226083299071248895931891435683229
OFFSET
0,4
COMMENTS
From Gus Wiseman, May 31 2019: (Start)
Also the number of strict integer partitions of 2^n with n parts. For example, the a(1) = 1 through a(4) = 9 partitions are (A = 10):
(2) (31) (431) (6532)
(521) (6541)
(7432)
(7531)
(7621)
(8431)
(8521)
(9421)
(A321)
(End)
LINKS
FORMULA
a(n) = [x^(2^n-n*(n+1)/2)] Product_{j=1..n} 1/(1-x^j).
a(n) ~ 2^(n*(n-1)) / (n!*(n-1)!). - Vaclav Kotesovec, Jun 05 2015
EXAMPLE
a(1) = 1: 11.
a(2) = 1: 211.
a(3) = 2: 3221, 32111.
a(4) = 9: 433321, 443221, 4322221, 4332211, 4432111, 43222111, 43321111, 432211111, 4321111111.
MATHEMATICA
a[n_] := SeriesCoefficient[Product[1/(1 - x^j), {j, 1, n}], {x, 0, 2^n - n*(n + 1)/2}];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 15}] (* Jean-François Alcover, Aug 19 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 16 2014
STATUS
approved