login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A237996 Triangular array read by rows.  T(n,k) is the number of even permutations of {1,2,...,n} that have exactly k cycles, n>=0,0<=k<=n. 1
1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 11, 0, 1, 0, 24, 0, 35, 0, 1, 0, 0, 274, 0, 85, 0, 1, 0, 720, 0, 1624, 0, 175, 0, 1, 0, 0, 13068, 0, 6769, 0, 322, 0, 1, 0, 40320, 0, 118124, 0, 22449, 0, 546, 0, 1, 0, 0, 1026576, 0, 723680, 0, 63273, 0, 870, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

Row sums = A001710(n).

REFERENCES

J. Riordan, Introduction to Combinatorial Analysis, Wiley, 1958, page 87, problem # 20.

LINKS

Alois P. Heinz, Rows n = 0..140, flattened

FORMULA

E.g.f.: exp(y*A(x))*cosh(y*B(x)) where A(x)= log((1 + x)/(1 - x))^(1/2) and B(x)=log(1/(1-x^2)^(1/2).

EXAMPLE

1,

0, 1,

0, 0, 1,

0, 2, 0, 1,

0, 0, 11, 0, 1,

0, 24, 0, 35, 0, 1,

0, 0, 274, 0, 85, 0, 1,

0, 720, 0, 1624, 0, 175, 0, 1,

0, 0, 13068, 0, 6769, 0, 322, 0, 1,

0, 40320, 0, 118124, 0, 22449, 0, 546, 0, 1,

0, 0, 1026576, 0, 723680, 0, 63273, 0, 870, 0, 1

MAPLE

with(combinat):

b:= proc(n, i, t) option remember; expand(`if`(n=0, t, `if`(i<1,

      0, add(x^j*multinomial(n, n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j,

      i-1, irem(t+`if`(irem(i, 2)=0, j, 0), 2)), j=0..n/i))))

    end:

T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 1)):

seq(T(n), n=0..12);  # Alois P. Heinz, Mar 09 2015

MATHEMATICA

nn=11; a=Log[((1+x)/(1-x))^(1/2)]; b=Log[1/(1-x^2)^(1/2)]; Table[Take[(Range[0, nn]!CoefficientList[Series[Exp[y a]Cosh[y b] , {x, 0, nn}], {x, y}])[[n]], n], {n, 1, nn}]//Grid

CROSSREFS

Sequence in context: A111593 A111594 A322549 * A203951 A323591 A105348

Adjacent sequences:  A237993 A237994 A237995 * A237997 A237998 A237999

KEYWORD

nonn,tabl

AUTHOR

Geoffrey Critzer, Feb 16 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 22:44 EDT 2019. Contains 328291 sequences. (Running on oeis4.)