|
|
A237998
|
|
Number of partitions of 2^n into parts that are at most n.
|
|
11
|
|
|
0, 1, 3, 10, 64, 831, 26207, 2239706, 567852809, 454241403975, 1192075219982204, 10510218491798860052, 315981966712495811700951, 32726459268483342710907384794, 11771239570056489326716955796095261, 14808470136486015545654676685321653888199
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) = [x^(2^n)] Product_{j=1..n} 1/(1-x^j).
|
|
EXAMPLE
|
a(1) = 1: 11.
a(2) = 3: 22, 211, 1111.
a(3) = 10: 332, 2222, 3221, 3311, 22211, 32111, 221111, 311111, 2111111, 11111111.
|
|
MATHEMATICA
|
a[n_] := SeriesCoefficient[Product[1/(1 - x^j), {j, 1, n}], {x, 0, 2^n}];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|