login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237998
Number of partitions of 2^n into parts that are at most n.
11
0, 1, 3, 10, 64, 831, 26207, 2239706, 567852809, 454241403975, 1192075219982204, 10510218491798860052, 315981966712495811700951, 32726459268483342710907384794, 11771239570056489326716955796095261, 14808470136486015545654676685321653888199
OFFSET
0,3
FORMULA
a(n) = [x^(2^n)] Product_{j=1..n} 1/(1-x^j).
a(n) ~ 2^(n*(n-1)) / (n!*(n-1)!). - Vaclav Kotesovec, Jun 05 2015
EXAMPLE
a(1) = 1: 11.
a(2) = 3: 22, 211, 1111.
a(3) = 10: 332, 2222, 3221, 3311, 22211, 32111, 221111, 311111, 2111111, 11111111.
MATHEMATICA
a[n_] := SeriesCoefficient[Product[1/(1 - x^j), {j, 1, n}], {x, 0, 2^n}];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Nov 03 2018 *)
CROSSREFS
Column k=2 of A238010.
Sequence in context: A042705 A041014 A367641 * A167939 A352766 A206724
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 16 2014
STATUS
approved