login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238000
Number of partitions of n^n into parts that are at most n.
12
0, 1, 3, 75, 123464, 33432635477, 2561606354507677872, 85980297709044488588773397089, 1841159754991692001851990839259642586671980, 34687845413783594101366282545316028561007822069601179170488
OFFSET
0,3
FORMULA
a(n) = [x^(n^n)] Product_{j=1..n} 1/(1-x^j).
a(n) ~ exp(2*n) * n^(n*(n-3)) / (2*Pi). - Vaclav Kotesovec, May 25 2015
EXAMPLE
a(1) = 1: 1.
a(2) = 3: 22, 211, 1111.
a(3) = 75: 333333333, ..., 111111111111111111111111111.
MATHEMATICA
a[n_] := SeriesCoefficient[Product[1/(1 - x^j), {j, 1, n}], {x, 0, n^n}];
a[0] = 0;
Table[a[n], {n, 0, 5}] (* Jean-François Alcover, Nov 03 2018 *)
CROSSREFS
Main diagonal of A238010 and A238016.
Sequence in context: A336062 A320306 A359500 * A308866 A089301 A037110
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 16 2014
STATUS
approved