login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238016 Number A(n,k) of partitions of n^k into parts that are at most n; square array A(n,k), n>=0, k>=0, read by antidiagonals. 24
0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 5, 12, 5, 1, 1, 1, 9, 75, 64, 7, 1, 1, 1, 17, 588, 2280, 377, 11, 1, 1, 1, 33, 5043, 123464, 106852, 2432, 15, 1, 1, 1, 65, 44652, 7566280, 55567352, 6889527, 16475, 22, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

In general, for k>3, is column k asymptotic to exp(2*n) * n^((k-2)*n-k) / (2*Pi). For k=1 see A000041, for k=2 see A206226 and for k=3 see A238608. - Vaclav Kotesovec, May 25 2015

Conjecture: If f(n) >= O(n^4) then "number of partitions of f(n) into parts that are at most n" is asymptotic to f(n)^(n-1) / (n!*(n-1)!). See also A237998, A238000, A236810 or A258668-A258672. - Vaclav Kotesovec, Jun 07 2015

LINKS

Alois P. Heinz, Antidiagonals n = 0..54, flattened

A. V. Sills and D. Zeilberger, Formulae for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz) arXiv:1108.4391 [math.CO], 2011.

FORMULA

A(n,k) = [x^(n^k)] Product_{j=1..n} 1/(1-x^j).

EXAMPLE

A(3,1) = 3: 3, 21, 111.

A(3,2) = 12: 333, 3222, 3321, 22221, 32211, 33111, 222111, 321111, 2211111, 3111111, 21111111, 111111111.

A(2,3) = 5: 2222, 22211, 221111, 2111111, 11111111.

A(2,4) = 9: 22222222, 222222211, 2222221111, 22222111111, 222211111111, 2221111111111, 22111111111111, 211111111111111, 1111111111111111.

Square array A(n,k) begins:

  0, 1,   1,      1,        1,           1, ...

  1, 1,   1,      1,        1,           1, ...

  1, 2,   3,      5,        9,          17, ...

  1, 3,  12,     75,      588,        5043, ...

  1, 5,  64,   2280,   123464,     7566280, ...

  1, 7, 377, 106852, 55567352, 33432635477, ...

MATHEMATICA

A[n_, k_] := SeriesCoefficient[Product[1/(1-x^j), {j, 1, n}], {x, 0, n^k}]; A[0, 0] = 0; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-Fran├žois Alcover, Oct 11 2015 *)

CROSSREFS

Columns k=0-10 give: A057427, A000041, A206226, A238608, A238609, A238610, A238611, A238612, A238613, A238614, A238615.

Rows n=0-10 give: A057427, A000012, A094373, A238630, A238631, A238632, A238633, A238634, A238635, A238636, A238637.

Main diagonal gives A238000.

Cf. A238010.

Sequence in context: A220708 A110541 A331461 * A185812 A152798 A079115

Adjacent sequences:  A238013 A238014 A238015 * A238017 A238018 A238019

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Feb 17 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 12:14 EST 2020. Contains 331996 sequences. (Running on oeis4.)