OFFSET
0,8
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
FORMULA
T(n,k) = Sum_{j=0..n-k} C((k-1)*(n-k)-(k-2)*j, j)*C(j, n-k-j).
EXAMPLE
Rows begin
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 3, 3, 1, 1;
1, 5, 7, 4, 1, 1;
1, 8, 19, 13, 5, 1, 1;
1, 13, 51, 46, 21, 6, 1, 1;
1, 21, 141, 166, 89, 31, 7, 1, 1;
As a number square read by antidiagonals, rows begin
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 3, 7, 13, 21, 31, ...
1, 5, 19, 46, 89, 151, ...
1, 8, 51, 166, 393, 776, ...
MATHEMATICA
T[n_, k_] := Sum[Binomial[(k-1)*(n-k) - (k-2)*j, j]*Binomial[j, n-k-j], {j, 0, n-k}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 31 2017 *)
PROG
(PARI) for(n=0, 20, for(k=0, n, print1(sum(j=0, n-k, binomial((k-1)*(n-k) -(k-2)*j, j)*binomial(j, n-k-j)), ", "))) \\ G. C. Greubel, Aug 31 2017
(Magma) [[(&+[Binomial((k-1)*(n-k)-(k-2)*j, j)*Binomial(j, n-k-j): j in [0..n-k]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 19 2019
(Sage) [[sum(binomial((k-1)*(n-k) -(k-2)*j, j)*binomial(j, n-k-j) for j in (0..n-k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 19 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> Sum([0..n-k], j-> Binomial((k-1)*(n-k)-(k-2)*j, j)*Binomial(j, n-k-j) )))); # G. C. Greubel, Feb 19 2019
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Jul 25 2005
STATUS
approved