login
A110541
A number triangle of sums of binomial products.
2
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 5, 7, 4, 1, 1, 1, 8, 19, 13, 5, 1, 1, 1, 13, 51, 46, 21, 6, 1, 1, 1, 21, 141, 166, 89, 31, 7, 1, 1, 1, 34, 393, 610, 393, 151, 43, 8, 1, 1, 1, 55, 1107, 2269, 1761, 776, 235, 57, 9, 1, 1, 1, 89, 3139, 8518, 7985, 4056, 1363, 344, 73, 10, 1, 1
OFFSET
0,8
COMMENTS
Columns include A000045, A002426, A026641. Rows include A000012, A000027, A002061(n+1). Row sums are A110542.
FORMULA
T(n,k) = Sum_{j=0..n-k} C((k-1)*(n-k)-(k-2)*j, j)*C(j, n-k-j).
EXAMPLE
Rows begin
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 3, 3, 1, 1;
1, 5, 7, 4, 1, 1;
1, 8, 19, 13, 5, 1, 1;
1, 13, 51, 46, 21, 6, 1, 1;
1, 21, 141, 166, 89, 31, 7, 1, 1;
As a number square read by antidiagonals, rows begin
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 3, 7, 13, 21, 31, ...
1, 5, 19, 46, 89, 151, ...
1, 8, 51, 166, 393, 776, ...
MATHEMATICA
T[n_, k_] := Sum[Binomial[(k-1)*(n-k) - (k-2)*j, j]*Binomial[j, n-k-j], {j, 0, n-k}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 31 2017 *)
PROG
(PARI) for(n=0, 20, for(k=0, n, print1(sum(j=0, n-k, binomial((k-1)*(n-k) -(k-2)*j, j)*binomial(j, n-k-j)), ", "))) \\ G. C. Greubel, Aug 31 2017
(Magma) [[(&+[Binomial((k-1)*(n-k)-(k-2)*j, j)*Binomial(j, n-k-j): j in [0..n-k]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 19 2019
(Sage) [[sum(binomial((k-1)*(n-k) -(k-2)*j, j)*binomial(j, n-k-j) for j in (0..n-k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 19 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> Sum([0..n-k], j-> Binomial((k-1)*(n-k)-(k-2)*j, j)*Binomial(j, n-k-j) )))); # G. C. Greubel, Feb 19 2019
CROSSREFS
Sequence in context: A323718 A130580 A220708 * A331461 A238016 A185812
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jul 25 2005
STATUS
approved