The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110544 Decimal expansion of -Integral {x=1..2} log gamma(x) dx. 3
 0, 8, 1, 0, 6, 1, 4, 6, 6, 7, 9, 5, 3, 2, 7, 2, 5, 8, 2, 1, 9, 6, 7, 0, 2, 6, 3, 5, 9, 4, 3, 8, 2, 3, 6, 0, 1, 3, 8, 6, 0, 2, 5, 2, 6, 3, 6, 2, 2, 1, 6, 5, 8, 7, 1, 8, 2, 8, 4, 8, 4, 5, 9, 5, 1, 7, 2, 3, 4, 3, 0, 4, 0, 7, 2, 7, 3, 9, 6, 0, 2, 3, 0, 5, 2, 5, 6, 7, 0, 1, 3, 6, 4, 0, 4, 5, 8, 0, 2, 3, 7, 7, 9, 9, 4, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Eric Weisstein's World of Mathematics, Log Gamma Function. Eric Weisstein's World of Mathematics, Gamma Function. FORMULA Equals zeta'(0)+1 = -1/2*log(2*Pi)+1. - Jean-François Alcover, Jun 10 2013 From Amiram Eldar, Jul 05 2020: (Start) Equals Sum_{k>=2} (1/(k + 1) - 1/(2*k))*(zeta(k)-1). Equals Integral_{x=0..1} (1/2 - 1/(1 - x) - 1/log(x)) dx/log(x). (End) EXAMPLE 0.081061466795327258219670263594382360138602526362216587182848459... MATHEMATICA RealDigits[ N[ -Integrate[ Log[ Gamma[ x]], {x, 1, 2}], 128], 10, 128] RealDigits[ 1/2*Log[2*Pi]-1, 10, 105] // First // Prepend[#, 0]& (* Jean-François Alcover, Jun 10 2013 *) PROG (PARI) -intnum(x=1, 2, log(gamma(x))) \\ Michel Marcus, Jul 05 2020 CROSSREFS Cf. A110543. Sequence in context: A214097 A194732 A217739 * A320084 A153855 A340065 Adjacent sequences:  A110541 A110542 A110543 * A110545 A110546 A110547 KEYWORD cons,nonn AUTHOR Robert G. Wilson v, Jul 25 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 11:41 EDT 2021. Contains 346273 sequences. (Running on oeis4.)