OFFSET
1,2
COMMENTS
This is a rational number.
This constant does not belong to the infinite series of prime number products of the form: Product_{p>=2} (p^(2*n)-1)/(p^(2*n)+1),
This number has decimal period length 230:
1.81(0781476121562952243125904486251808972503617945007235890014471780028943
5600578871201157742402315484804630969609261939218523878437047756874095
5137481910274963820549927641099855282199710564399421128798842257597684
51519536903039073806).
FORMULA
Equals 5005/2764 = 5*7*11*13/(2^2*691).
Equals (13/9)*A340066.
From Vaclav Kotesovec, Dec 29 2020: (Start)
Equals 3/2 * (Product_{p prime} (p^6+1)/(p^6-1)) * (Product_{p prime} (p^4+1)/(p^4-1)).
Equals 7*zeta(6)^2 / (4*zeta(12)).
Equals -7*binomial(12, 6) * Bernoulli(6)^2 / (8*Bernoulli(12)). (End)
Equals Sum_{k>=1} A005361(k)/k^2. - Amiram Eldar, Jan 23 2024
EXAMPLE
1.8107814761215629522431259...
MATHEMATICA
RealDigits[N[5005/2764, 105]][[1]]
PROG
(PARI)
default(realprecision, 105)
prodeulerrat(1+p^2/((p-1)^2*(p+1)^2))
CROSSREFS
KEYWORD
AUTHOR
Artur Jasinski, Dec 28 2020
STATUS
approved