login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340065
Decimal expansion of the Product_{p>=2} 1+p^2/((p-1)^2*(p+1)^2) where p are successive prime numbers A000040.
2
1, 8, 1, 0, 7, 8, 1, 4, 7, 6, 1, 2, 1, 5, 6, 2, 9, 5, 2, 2, 4, 3, 1, 2, 5, 9, 0, 4, 4, 8, 6, 2, 5, 1, 8, 0, 8, 9, 7, 2, 5, 0, 3, 6, 1, 7, 9, 4, 5, 0, 0, 7, 2, 3, 5, 8, 9, 0, 0, 1, 4, 4, 7, 1, 7, 8, 0, 0, 2, 8, 9, 4, 3, 5, 6, 0, 0, 5, 7, 8, 8, 7, 1, 2, 0, 1, 1, 5, 7, 7, 4, 2, 4, 0, 2, 3, 1, 5, 4, 8, 4, 8, 0, 4, 6
OFFSET
1,2
COMMENTS
This is a rational number.
This constant does not belong to the infinite series of prime number products of the form: Product_{p>=2} (p^(2*n)-1)/(p^(2*n)+1),
which are rational numbers equal to zeta(4*n)/(zeta(2*n))^2 = A114362(n+1)/A114363(n+1).
This number has decimal period length 230:
1.81(0781476121562952243125904486251808972503617945007235890014471780028943
5600578871201157742402315484804630969609261939218523878437047756874095
5137481910274963820549927641099855282199710564399421128798842257597684
51519536903039073806).
FORMULA
Equals 5005/2764 = 5*7*11*13/(2^2*691).
Equals Product_{n>=1} 1+A000040(n)^2/A084920(n)^2.
Equals (13/9)*A340066.
From Vaclav Kotesovec, Dec 29 2020: (Start)
Equals 3/2 * (Product_{p prime} (p^6+1)/(p^6-1)) * (Product_{p prime} (p^4+1)/(p^4-1)).
Equals 7*zeta(6)^2 / (4*zeta(12)).
Equals -7*binomial(12, 6) * Bernoulli(6)^2 / (8*Bernoulli(12)). (End)
Equals Sum_{k>=1} A005361(k)/k^2. - Amiram Eldar, Jan 23 2024
EXAMPLE
1.8107814761215629522431259...
MATHEMATICA
RealDigits[N[5005/2764, 105]][[1]]
PROG
(PARI)
default(realprecision, 105)
prodeulerrat(1+p^2/((p-1)^2*(p+1)^2))
KEYWORD
nonn,cons,easy
AUTHOR
Artur Jasinski, Dec 28 2020
STATUS
approved