login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111003
Decimal expansion of Pi^2/8.
39
1, 2, 3, 3, 7, 0, 0, 5, 5, 0, 1, 3, 6, 1, 6, 9, 8, 2, 7, 3, 5, 4, 3, 1, 1, 3, 7, 4, 9, 8, 4, 5, 1, 8, 8, 9, 1, 9, 1, 4, 2, 1, 2, 4, 2, 5, 9, 0, 5, 0, 9, 8, 8, 2, 8, 3, 0, 1, 6, 6, 8, 6, 7, 2, 0, 2, 7, 5, 0, 5, 6, 0, 2, 8, 0, 2, 4, 0, 0, 6, 5, 5, 3, 7, 5, 2, 2, 1, 6, 7, 5, 4, 6, 4, 8, 1, 9, 0, 2, 8, 9, 7, 8, 0, 0
OFFSET
1,2
COMMENTS
According to Beckmann, Euler discovered the formula for this number as a sum of squares of reciprocals of odd numbers, along with similar formulas for Pi^2/6 and Pi^2/12. - Alonso del Arte, Apr 01 2013
Equals the asymptotic mean of the abundancy index of the odd numbers. - Amiram Eldar, May 12 2023
REFERENCES
F. Aubonnet, D. Guinin and B.Joppin, Précis de Mathématiques, Analyse 2, Classes Préparatoires, Premier Cycle Universitaire, Bréal, 1990, Exercice 908, pages 82 and 91-92.
Petr Beckmann, A History of Pi, 5th Ed. Boulder, Colorado: The Golem Press (1982): p. 153.
George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 122.
Calvin C. Clawson, The Beauty and Magic of Numbers. New York: Plenum Press (1996): 98.
L. B. W. Jolley, Summation of Series, Dover (1961).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 54.
FORMULA
Equals 1 + 1/(2*3) + (1/3)*(1*2)/(3*5) + (1/4)*(1*2*3)/(3*5*7) + ... [Jolley eq 276]
Equals Sum_{k >= 1} 1/(2*k - 1)^2 [Clawson and Wells]. - Alonso del Arte, Aug 15 2012
Equals 2*(Integral_{t=0..1} sqrt(1 - t^2) dt)^2. - Alonso del Arte, Mar 29 2013
Equals Sum_{k >= 1} 2^k/(k^2*binomial(2*k, k)). - Jean-François Alcover, Apr 29 2013
Equals Integral_{x=0..1} log((1+x^2)/(1-x^2))/x dx. - Bruno Berselli, May 13 2013
Equals limit_{p->0} Integral_{x=0..Pi/2} x*tan(x)^p dx. [Jean-François Alcover, May 17 2013, after Boros & Moll p. 230]
Equals A002388/8 = A102753/4 = A091476/2. - R. J. Mathar, Oct 13 2015
Equals Integral_{x>=0} x*K_0(x)*K_1(x)dx where K are modified Bessel functions [Gradsteyn-Ryzhik 6.576.4]. - R. J. Mathar, Oct 22 2015
Equals (3/4)*zeta(2) = (3/4)*A013661. - Wolfdieter Lang, Sep 02 2019
From Amiram Eldar, Jul 17 2020: (Start)
Equals -Integral_{x=0..1} log(x)/(1 - x^2) dx = Integral_{x>=1} log(x)/(x^2-1) dx.
Equals -Integral_{x=0..oo} log(x)/(1 - x^4) dx.
Equals Integral_{x=0..oo} arctan(x)/(1 + x^2) dx. (End)
Equals Integral_{x=0..1} log(1+x+x^2+x^3)/x dx (Aubonnet). - Bernard Schott, Feb 04 2022
EXAMPLE
1.23370055013616982735431137498451889191421242590509882830166867202...
1 + 1/9 + 1/25 + 1/49 + 1/81 + 1/121 + 1/169 + 1/225 + ... - Bruno Berselli, Mar 06 2017
MATHEMATICA
RealDigits[Pi^2/8, 10, 105][[1]] (* Robert G. Wilson v *)
PROG
(PARI) Pi^2/8 \\ Charles R Greathouse IV, Dec 04 2016
(PARI) sumpos(n=1, (2*n-1)^-2) \\ Charles R Greathouse IV, Mar 02 2018
CROSSREFS
Cf. A013661 (Pi^2/6), A002388, A102753, A091476.
Sequence in context: A087989 A028257 A100228 * A347904 A289277 A140182
KEYWORD
cons,nonn
AUTHOR
Sam Alexander, Oct 01 2005
EXTENSIONS
More terms from Robert G. Wilson v, Oct 04 2005
STATUS
approved