login
A065485
Decimal expansion of Murata's constant Product_{p prime} (1 + 1/(p-1)^2).
9
2, 8, 2, 6, 4, 1, 9, 9, 9, 7, 0, 6, 7, 5, 9, 1, 5, 7, 5, 5, 4, 6, 3, 9, 1, 7, 4, 7, 2, 3, 6, 9, 5, 3, 7, 4, 9, 0, 1, 3, 0, 4, 1, 1, 0, 5, 4, 5, 9, 2, 6, 6, 8, 7, 6, 1, 7, 9, 7, 4, 5, 8, 3, 4, 5, 3, 0, 7, 5, 7, 6, 2, 4, 4, 5, 9, 7, 6, 2, 4, 0, 5, 5, 3, 3, 4, 5, 8, 6, 6, 4, 9, 8, 8, 1, 8, 4, 4, 5
OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 2.4 and 2.7, pp. 106, 117.
LINKS
Leo Murata, On the magnitude of the least prime primitive root, Journal of Number Theory, Vol. 37, No. 1 (1991), pp. 47-66.
Eric Weisstein's World of Mathematics, Murata's Constant.
Eric Weisstein's World of Mathematics, Prime Products.
FORMULA
Equals lim_{k->oo} (1/pi(k)) * Sum_{p prime, p <= k} (p-1)/phi(p-1), where pi(k) = A000720(k) and phi(k) = A000010(k) (Murata, 1991). - Amiram Eldar, Jul 31 2020
Equals Sum_{k>=1} mu(k)^2/phi(k)^2, where mu is the Möbius function (A008683) and phi is the Euler totient function (A000010). - Amiram Eldar, Jan 14 2022
EXAMPLE
2.8264199970675915755463917472369537490...
MATHEMATICA
digits = 99; terms = 1000; $MaxExtraPrecision = 500; r[n_Integer] := 2 - (1-I)^(n+1) - (1+I)^(n+1); NSum[r[n-1]*PrimeZetaP[n]/n, {n, 2, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10] // Exp // RealDigits[ #, 10, digits]& // First (* Jean-François Alcover, Apr 16 2016 *)
PROG
(PARI) prodeulerrat(1 + 1/(p-1)^2) \\ Vaclav Kotesovec, Sep 19 2020
CROSSREFS
KEYWORD
cons,nonn,changed
AUTHOR
N. J. A. Sloane, Nov 19 2001; edited Sep 16 2007 at the suggestion of R. J. Mathar
STATUS
approved