Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Jan 23 2024 08:42:10
%S 1,8,1,0,7,8,1,4,7,6,1,2,1,5,6,2,9,5,2,2,4,3,1,2,5,9,0,4,4,8,6,2,5,1,
%T 8,0,8,9,7,2,5,0,3,6,1,7,9,4,5,0,0,7,2,3,5,8,9,0,0,1,4,4,7,1,7,8,0,0,
%U 2,8,9,4,3,5,6,0,0,5,7,8,8,7,1,2,0,1,1,5,7,7,4,2,4,0,2,3,1,5,4,8,4,8,0,4,6
%N Decimal expansion of the Product_{p>=2} 1+p^2/((p-1)^2*(p+1)^2) where p are successive prime numbers A000040.
%C This is a rational number.
%C This constant does not belong to the infinite series of prime number products of the form: Product_{p>=2} (p^(2*n)-1)/(p^(2*n)+1),
%C which are rational numbers equal to zeta(4*n)/(zeta(2*n))^2 = A114362(n+1)/A114363(n+1).
%C This number has decimal period length 230:
%C 1.81(0781476121562952243125904486251808972503617945007235890014471780028943
%C 5600578871201157742402315484804630969609261939218523878437047756874095
%C 5137481910274963820549927641099855282199710564399421128798842257597684
%C 51519536903039073806).
%F Equals 5005/2764 = 5*7*11*13/(2^2*691).
%F Equals Product_{n>=1} 1+A000040(n)^2/A084920(n)^2.
%F Equals (13/9)*A340066.
%F From _Vaclav Kotesovec_, Dec 29 2020: (Start)
%F Equals 3/2 * (Product_{p prime} (p^6+1)/(p^6-1)) * (Product_{p prime} (p^4+1)/(p^4-1)).
%F Equals 7*zeta(6)^2 / (4*zeta(12)).
%F Equals -7*binomial(12, 6) * Bernoulli(6)^2 / (8*Bernoulli(12)). (End)
%F Equals Sum_{k>=1} A005361(k)/k^2. - _Amiram Eldar_, Jan 23 2024
%e 1.8107814761215629522431259...
%t RealDigits[N[5005/2764,105]][[1]]
%o (PARI)
%o default(realprecision,105)
%o prodeulerrat(1+p^2/((p-1)^2*(p+1)^2))
%Y Cf. A000040, A005361, A084920, A065483, A065484, A065485, A109695, A111003, A114362, A114363, A116393, A167864, A231535, A307868, A330523, A330595, A335319, A335762, A335818, A339925, A340066.
%K nonn,cons,easy
%O 1,2
%A _Artur Jasinski_, Dec 28 2020