login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229495
Stirling's approximation constant e / sqrt(2*Pi).
2
1, 0, 8, 4, 4, 3, 7, 5, 5, 1, 4, 1, 9, 2, 2, 7, 5, 4, 6, 6, 1, 1, 5, 7, 7, 3, 1, 3, 4, 2, 2, 9, 4, 7, 9, 8, 5, 8, 3, 9, 5, 9, 6, 9, 3, 1, 9, 6, 4, 7, 2, 6, 2, 6, 8, 2, 2, 5, 1, 3, 4, 3, 4, 7, 1, 2, 2, 8, 7, 5, 1, 4, 7, 9, 6, 2, 6, 9, 0, 0, 2, 4, 9, 9, 0, 3, 4, 7, 1, 6, 8, 2, 8, 8, 4, 8, 4, 7, 5, 3, 1, 5, 2, 3, 6, 6, 7, 9, 3, 9, 1, 9, 7, 3, 4, 9, 3, 6, 4, 3, 5, 3, 4, 7, 6, 8, 3, 8, 1, 5, 4, 1, 3, 1, 9, 5, 6, 3, 3, 6, 6, 3, 3, 4, 2, 9, 5, 1, 9, 7
OFFSET
1,3
REFERENCES
Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 1.5, pages 2 and 27-28.
FORMULA
Equals exp(1)/sqrt(2*Pi).
Equals lim_{n->oo} (A001142(n)^(1/n)*sqrt(n)/(exp(n/2))) (Furdui, 2013). - Amiram Eldar, Mar 26 2022
Equals Product_{n>=1} (1 + 1/n)^(n+1/2)/e. - Amiram Eldar, Jul 08 2023
EXAMPLE
1.0844375514192275466115773134229479858...
MAPLE
evalf(exp(1)/sqrt(2*Pi), 120); # Muniru A Asiru, Oct 07 2018
MATHEMATICA
RealDigits[E/Sqrt[2Pi], 10, 120][[1]] (* Harvey P. Dale, Jan 21 2017 *)
PROG
(PARI) exp(1)/sqrt(2*Pi) \\ Ralf Stephan, Sep 26 2013
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Exp(1)/Sqrt(2*Pi(R)); // G. C. Greubel, Oct 06 2018
CROSSREFS
Cf. A001113 (e), A019727 (sqrt(2*Pi)), A001142.
Sequence in context: A244091 A197033 A245720 * A370198 A131921 A129105
KEYWORD
nonn,cons
AUTHOR
John W. Nicholson, Sep 24 2013
EXTENSIONS
More terms from Ralf Stephan, Sep 26 2013
Corrected and extended by Harvey P. Dale, Jan 21 2017
STATUS
approved