login
A244091
Decimal expansion of sqrt(3)/(2*(sqrt(2)-1))^(1/3), the Landau-Kolmogorov constant C(3,1) for derivatives in L_2(0, infinity).
13
1, 8, 4, 4, 2, 0, 4, 9, 8, 0, 6, 3, 3, 3, 9, 3, 6, 9, 1, 7, 0, 5, 6, 9, 0, 5, 4, 7, 4, 9, 4, 1, 2, 9, 9, 6, 8, 7, 9, 9, 6, 8, 8, 3, 9, 3, 0, 7, 3, 0, 1, 8, 2, 2, 0, 3, 8, 8, 4, 4, 9, 5, 6, 8, 9, 7, 0, 1, 1, 5, 5, 2, 9, 0, 3, 3, 5, 0, 5, 5, 1, 0, 8, 5, 9, 5, 3, 5, 7, 8, 0, 7, 5, 7, 4, 7, 6, 2, 0, 5
OFFSET
1,2
COMMENTS
The corresponding Landau-Kolmogorov inequality is ||f'|| <= C(3,1) ||f||^(2/3) ||f'''||^(1/3) where the real-valued function f is defined on the half-line (0,infinity), the involved norm being ||f|| = (integral_(0..infinity) f(x)^2 dx)^(1/2).
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.3 Landau-Kolmogorov constants, p. 214.
LINKS
Eric Weisstein's World of Mathematics, Landau-Kolmogorov Constants
EXAMPLE
1.84420498063339369170569...
MATHEMATICA
RealDigits[ Sqrt[3]/(2*(Sqrt[2] - 1))^(1/3), 10, 100][[1]]
PROG
(PARI) sqrt(3)/(2*(sqrt(2)-1))^(1/3) \\ G. C. Greubel, Jul 05 2017
CROSSREFS
Sequence in context: A093822 A356810 A011360 * A197033 A245720 A229495
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved