login
A244090
Numbers n such that n is a factorion (A014080, equal to the sum of the factorials of its digits), in at least one base b.
1
1, 2, 7, 25, 26, 48, 49, 121, 122, 144, 145, 240, 721, 722, 726, 1440, 1441, 1442, 5041, 5042, 5162, 5760
OFFSET
1,2
COMMENTS
The bases in which n = func(n) are 2, 2, 4, 6, 6, 11, 5, 24, 24, 28, 10, 47, 120, 120, 240, 239, 15, 15, 720, 720, 27, 822. Note multiple bases for some n, e.g. 25 = 4! + 1! in base 6 and 25 = 1! + 4! in base 21; 721 = 6! + 1! in base 120 and 721 = 1! + 6! in base 715.
FORMULA
s = 0; for digit(i=1..j) of n in base b, s = s + digit(i)!.
EXAMPLE
1 = 1! = 1 (base>=2).
2 = 1! + 0! = 1 + 1 = 10 (b=2).
7 = 1! + 3! = 1 + 6 = 13 (b=4).
25 = 4! + 1! = 24 + 1 = 41 (b=6).
26 = 4! + 2! = 24 + 2 = 42 (b=6).
48 = 4! + 4! = 24 + 24 = 44 (b=11).
49 = 1! + 4! + 4! = 1 + 24 + 24 = 144 (b=5).
121 = 5! + 1! = 120 + 1 = 51 (b=24).
122 = 5! + 2! = 120 + 2 = 52 (b=24).
144 = 5! + 4! = 120 + 24 = 54 (b=28).
145 = 1! + 4! + 5! = 1 + 24 + 120 (b=10).
240 = 5! + 5! = 120 + 120 = 55 (b=47).
PROG
(PARI) isok(n) = {if (n==1, return (1)); for (b=2, n, d = digits(n, b); if (sum(i=1, #d, d[i]!) == n, return (1)); ); return (0); } \\ Michel Marcus, Jun 21 2014
CROSSREFS
Sequence in context: A236422 A013204 A013209 * A247880 A330051 A145130
KEYWORD
nonn,base,more
AUTHOR
Anthony Sand, Jun 20 2014
STATUS
approved