login
A244093
Rounded down ratio of area of a unit circle and a circle inscribed in any of the n triangles composing a regular n-gon which is circumscribed by a unit circle.
4
18, 11, 11, 12, 13, 15, 17, 19, 22, 25, 28, 31, 35, 39, 42, 47, 51, 56, 60, 65, 70, 76, 81, 87, 93, 99, 106, 112, 119, 126, 133, 141, 148, 156, 164, 173, 181, 190, 198, 207, 217, 226, 236, 246, 256, 266, 276, 287, 298, 309, 320, 332, 343, 355, 367, 380, 392, 405, 418, 431, 444
OFFSET
3,1
COMMENTS
The minimum ratio occurs at n = 5.
FORMULA
a(n) = floor(Pi/area(n)) where area = Pi*r(n)^2, r(n) = (s(n)/2)*sqrt((2 - s(n))/(2 + s(n))), with s(n) = 2*sin(Pi/n) which is the side length (length unit 1) of the regular n gon. [rewritten by Wolfdieter Lang, Jun 30 2014 and Jul 02 2014]
a(n) = floor(1/r(n)^2) with r(n) = S(n)*(1 + C(n) - S(n))/(1 + C(n) + S(n)) with S(n) = s(n)/2 and C(n) = cos(Pi/n). 2*C(n) is the ratio of the length of the smallest diagonal and the side length s(n) in the regular n-gon. - Wolfdieter Lang, Jun 30 2014
PROG
(PARI)
{
for (n=3, 100,
c=2*sin(Pi/n);
s=(2+c)/2;
r=sqrt(((s-1)^2*(s-c))/s);
area=Pi*r^2;
a=floor(Pi/area);
print1(a, ", ")
)
}
CROSSREFS
Sequence in context: A290345 A035616 A355238 * A195926 A195929 A247604
KEYWORD
nonn
AUTHOR
Kival Ngaokrajang, Jun 20 2014
STATUS
approved