login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330051
a(n) = 1 + F(2*n+1) - (F(n+4) - (-1)^n*F(n-2))/2 where F=A000045.
2
0, 0, 2, 7, 25, 72, 208, 564, 1530, 4059, 10769, 28336, 74560, 195576, 513010, 1344063, 3521385, 9221688, 24149456, 63230860, 165558250, 433454835, 1134845857, 2971111392, 7778592000, 20364739632, 53315898338, 139583151799, 365434267705, 956720165544
OFFSET
0,3
FORMULA
a(n) = 1 + F(2*n+1) - F(n+2) - (F(-n+2) + F(n+1))/2.
G.f.: (2*x^2 - x^3 - x^4 + x^5) / (1 - 4*x + x^2 + 11*x^3 - 11*x^4 - x^5 + 4*x^6 - x^7).
b(n) + a(n) * sqrt(5) = F(2*n+2) * Product_{k=2..n} 1 / (1 - q^k/(1 - q^(2*k))) where q = (sqrt(5)-1)/2 and b=A330050.
a(n) = A005013(floor(n/2)) * A329421(n).
EXAMPLE
G.f. = 2*x^2 + 7*x^3 + 25*x^4 + 72*x^5 + 208*x^6 + 564*x^7 + 1530*x^8 + ...
MATHEMATICA
a[n_] := 1 + Fibonacci[2 n + 1] - (Fibonacci[n + 4] - (-1)^n Fibonacci[n - 2])/2
PROG
(PARI) {a(n) = 1 + fibonacci(2*n + 1) - (fibonacci(n + 4) - (-1)^n*fibonacci(n - 2))/2};
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Dec 01 2019
EXTENSIONS
Definition corrected by N. J. A. Sloane, May 29 2022 following a suggestion from Kevin Ryde.
Additional corrections by Eric Rowland, May 31 2022
STATUS
approved