OFFSET
0,3
COMMENTS
A set-system is a finite set of finite nonempty sets of positive integers. An endpoint is a vertex appearing only once (degree 1). The weight of a set-system is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..50
Wikipedia, Degree (graph theory)
FORMULA
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(5) = 18 multiset partitions:
{1} {12} {123} {1234} {12345}
{1}{2} {1}{12} {1}{123} {1}{1234}
{1}{23} {12}{13} {12}{123}
{1}{2}{3} {1}{234} {12}{134}
{12}{34} {1}{2345}
{1}{2}{13} {12}{345}
{1}{2}{34} {1}{12}{13}
{1}{2}{3}{4} {1}{12}{23}
{1}{12}{34}
{1}{2}{123}
{1}{2}{134}
{1}{2}{345}
{1}{23}{45}
{2}{13}{14}
{1}{2}{3}{12}
{1}{2}{3}{14}
{1}{2}{3}{45}
{1}{2}{3}{4}{5}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
brute[{}]:={}; brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]], brute[m/.Rule@@@Table[{(Union@@m)[[i]], i}, {i, Length[Union@@m]}]], First[Sort[brute[m, 1]]]]; brute[m_, 1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i, p[[i]]}, {i, Length[p]}])], {p, Permutations[Union@@m]}];
Table[Length[Select[Union[brute/@Join@@mps/@strnorm[n]], UnsameQ@@#&&And@@UnsameQ@@@#&&Min@@Length/@Split[Sort[Join@@#]]==1&]], {n, 0, 5}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 30 2019
EXTENSIONS
a(11) onwards from Andrew Howroyd, Jan 27 2024
STATUS
approved