login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330052
Number of non-isomorphic set-systems of weight n with at least one endpoint.
10
0, 1, 2, 4, 8, 18, 40, 94, 228, 579, 1508, 4092, 11478, 33337, 100016, 309916, 990008, 3257196, 11021851, 38314009, 136657181, 499570867, 1869792499, 7158070137, 28003286261, 111857491266, 455852284867, 1893959499405, 8017007560487, 34552315237016, 151534813272661
OFFSET
0,3
COMMENTS
A set-system is a finite set of finite nonempty sets of positive integers. An endpoint is a vertex appearing only once (degree 1). The weight of a set-system is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
LINKS
FORMULA
a(n) = A283877(n) - A330054(n). - Andrew Howroyd, Jan 27 2024
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(5) = 18 multiset partitions:
{1} {12} {123} {1234} {12345}
{1}{2} {1}{12} {1}{123} {1}{1234}
{1}{23} {12}{13} {12}{123}
{1}{2}{3} {1}{234} {12}{134}
{12}{34} {1}{2345}
{1}{2}{13} {12}{345}
{1}{2}{34} {1}{12}{13}
{1}{2}{3}{4} {1}{12}{23}
{1}{12}{34}
{1}{2}{123}
{1}{2}{134}
{1}{2}{345}
{1}{23}{45}
{2}{13}{14}
{1}{2}{3}{12}
{1}{2}{3}{14}
{1}{2}{3}{45}
{1}{2}{3}{4}{5}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
brute[{}]:={}; brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]], brute[m/.Rule@@@Table[{(Union@@m)[[i]], i}, {i, Length[Union@@m]}]], First[Sort[brute[m, 1]]]]; brute[m_, 1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i, p[[i]]}, {i, Length[p]}])], {p, Permutations[Union@@m]}];
Table[Length[Select[Union[brute/@Join@@mps/@strnorm[n]], UnsameQ@@#&&And@@UnsameQ@@@#&&Min@@Length/@Split[Sort[Join@@#]]==1&]], {n, 0, 5}]
CROSSREFS
The complement is counted by A330054.
The multiset partition version is A330058.
Non-isomorphic set-systems with at least one singleton are A330053.
Non-isomorphic set-systems counted by vertices are A000612.
Non-isomorphic set-systems counted by weight are A283877.
Sequence in context: A288309 A096813 A058387 * A317787 A019231 A333865
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 30 2019
EXTENSIONS
a(11) onwards from Andrew Howroyd, Jan 27 2024
STATUS
approved