The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A329421 a(n) = gcd(A330050(n), A330051(n)). 3
 0, 3, 2, 7, 25, 72, 52, 141, 510, 1353, 979, 2576, 9320, 24447, 17690, 46347, 167685, 439128, 317756, 831985, 3010150, 7880997, 5702743, 14930208, 54018000, 141421803, 102333778, 267913919, 969321665, 2537719272, 1836310916, 4807525989, 17393792430, 45537545553 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 FORMULA a(n) = -a(-2-n) for all odd n in Z. a(4*n-1) = A215042(n) for all n in Z. Conjectures from Colin Barker, Dec 02 2019: (Start) G.f.: x*(1 + x)*(3 - x + 8*x^2 + 17*x^3 - 8*x^4 + 18*x^5 - 24*x^6 + 9*x^7 - x^9 + 8*x^10 + 2*x^11 + x^12) / ((1 + 4*x^2 - x^4)*(1 + x^2 - x^4)*(1 - x^2 - x^4)*(1 - 4*x^2 - x^4)). a(n) = 21*a(n-4) - 56*a(n-8) + 21*a(n-12) - a(n-16) for n>15. (End) EXAMPLE G.f. = 3*x + 2*x^2 + 7*x^3 + 25*x^4 + 72*x^5 + 52*x^6 + 141*x^7 + ... MATHEMATICA a[ n_] := With[{i = 1 + Quotient[n, 2], j = 1 + 2 Mod[n, 2] + 3 Quotient[n, 2]}, If[ Mod[n, 4] > 1, Fibonacci[j] - Fibonacci[i], LucasL[j] - LucasL[i]]]; PROG (PARI) {a(n) = my(i=n\2+1, j=n%2+i+n, F=fibonacci, L=x->F(x+1)+F(x-1), h=if(n\2%2, x->F(x), x->L(x))); h(j)-h(i)}; CROSSREFS Cf. A215042, A330050, A330051. Sequence in context: A111928 A348695 A248054 * A100985 A176802 A230710 Adjacent sequences:  A329418 A329419 A329420 * A329422 A329423 A329424 KEYWORD nonn,easy AUTHOR Michael Somos, Nov 30 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 09:10 EST 2021. Contains 349484 sequences. (Running on oeis4.)