OFFSET
0,2
COMMENTS
FORMULA
(Sum_{k=0..n} (-1)^k * T(n, k)) / h(n) = A000111(n), where h(n) = (-1)^binomial(n, 2) * 2^(n * iseven(n)), see A059222.
From Detlef Meya, Oct 04 2023: (Start)
T(n, k) = (2*k + 1 - k*(n mod 2))^(n - 1)*add(binomial(n + 1, j), j = 0..n - k)*(2*k + 1 - k*(n mod 2)).
T(n, k) = (2^(n + 1) - binomial(n + 1, n - k + 1)*hypergeom([1, -k], [n - k + 2], -1))*(2*k + 1 - k*(n mod 2))^n. (End)
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] 3, 2;
[2] 7, 36, 25;
[3] 15, 88, 135, 64;
[4] 31, 2106, 10000, 14406, 6561;
[5] 63, 1824, 10206, 22528, 21875, 7776;
[6] 127, 87480, 1546875, 7529536, 15411789, 14172488, 4826809;
[7] 255, 31616, 478953, 2670592, 7265625, 10357632, 7411887, 2097152;
MAPLE
P := (n, x) -> add(add(x^j * binomial(k, j) * ((2 - irem(n, 2)) * j + 1)^n,
j = 0..k) * 2^(n - k), k = 0..n): T := (n, k) -> coeff(P(n, x), x, k):
seq(seq(T(n, k), k = 0..n), n = 0..8);
MATHEMATICA
From Detlef Meya, Oct 04 2023: (Start)
T[n_, k_] := (2^(n+1)-Binomial[n+1, n-k+1]*Hypergeometric2F1[1, -k, n-k+2, -1])*(2*k+1-k*Mod[n, 2])^n;
(* Or: *)
T[n_, k_] := (2*k+1-k*Mod[n, 2])^(n-1)*Sum[Binomial[n+1, j], {j, 0, n-k}]*(2*k+1-k*Mod[n, 2]);
Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]] (* End *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 31 2023
STATUS
approved