The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A100985 Number of Q_5-isomorphism classes of fields of degree n in the algebraic closure of Q_5. 8
1, 3, 2, 7, 26, 7, 2, 11, 3, 378, 2, 17, 2, 6, 1012, 17, 2, 11, 2, 22302, 4, 6, 2, 29, 397515, 6, 4, 14, 2, 406902, 2, 23, 4, 6, 535732, 27, 2, 6, 4, 19437446, 2, 15, 2, 14, 16927758, 6, 2, 49, 3 (list; graph; refs; listen; history; text; internal format)



Xiang-Dong Hou and Kevin Keating, Enumeration of isomorphism classes of extensions of p-adic fields, 2001

M. Krasner, Le nombre des surcorps primitifs d'un degre donne et le nombre des surcorps metagaloisiens d'un degre donne d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Academie des Sciences, Paris 254, 255, 1962


Table of n, a(n) for n=1..49.


p:=5; n=f*e; f residue degree, e ramification index if (p, e)=1, let I(f, e):=b/e*sum_{h=0}^{e-1} 1/c_h, where b=gcd(e, p^f-1), c_h the smallest positive integer such that b divides (p^c-1)*h a(n) = sum_{f | n} I(f, n/f) There exists a formula, when p divides e exactly and there exists a big formula for some cases when p^2 divides e exactly.


a(3)=2, There is the one unramified extension Q_125, one ramified with Galoisgroup S_3 Q_5[x]/(x^3+5)

There are 1+3*1=4 extensions (Cf. A100978) in 1+1=2 Q_5-isomorphism classes.


# for gcd(e, p)=1 only! smallestIntDiv:=proc() local b, q, h, i; b:=args[1]; q:=args[2]; h:=args[3]; for i from 1 to infinity do if gcd(b, (q^i-1)*h)=b then return i; fi; od; end: I0Ffefe:=proc() local p, f1, e1, f, e, i, q, h, summe, c, b; p:=args[1]; f1:=args[2]; e1:=args[3]; f:=args[4]; e:=args[5]; summe:=0; q:=p^f1; b:=gcd(e, q^f-1); for h from 0 to e-1 do c:=smallestIntDiv(b, q, h); summe:=summe+1/c; od; return b/e*summe; end: I0Ffen:=proc() local p, e1, f1, n, f, e, summe; p:=args[1]; e1:=args[2]; f1:=args[3]; n:=args[4]; summe:=0; for f in divisors(n) do e:=n/f; summe:=summe+I0Ffefe(p, f1, e1, f, e); od; return summe; end: p:=5; a(n):=I0Ffen(p, 1, 1, n);


Cf. A100976, A100977, A100978, A100979, A100980, A100981, A100983, A100984, A100986.

Sequence in context: A111928 A248054 A329421 * A176802 A230710 A265009

Adjacent sequences:  A100982 A100983 A100984 * A100986 A100987 A100988




Volker Schmitt (clamsi(AT)gmx.net), Nov 29 2004



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 22 21:29 EDT 2021. Contains 345393 sequences. (Running on oeis4.)