login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100977
Number of all extensions over Q_3 with degree n in the algebraic closure of Q_3.
9
1, 3, 22, 7, 6, 228, 8, 15, 5323, 18, 12, 5068, 14, 24, 13092, 31, 18, 1495839, 20, 42, 157424, 36, 24, 885660, 31, 42, 942953404, 56, 30, 9565848, 32, 63, 19131816, 54, 48, 24240086731, 38, 60, 200884628, 90, 42, 1033121184, 44, 84
OFFSET
1,2
REFERENCES
M. Krasner, Le nombre des surcorps primitifs d'un degré donné et le nombre des surcorps métagaloisiens d'un degré donné d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Académie des Sciences, Paris 254, 255, 1962.
FORMULA
a(n)=(sum_{d|h}d)*(sum_{s=0}^m (p^(m+s+1)-p^(2*s))/(p-1)*(p^(eps(s)*n)-p^(eps(s-1)*n))), where p=3, n=h*p^m, with gcd(h, p)=1, eps(-1)=-infinity, eps(0)=0 and eps(s)=sum_{i=1 to s} 1/(p^i)
EXAMPLE
a(2)=3 There are 2 ramified extensions with minimal polynomials x^2+3, x^2-3 and one unramified x^2+2*x+2.
MAPLE
p:=3; eps:=proc()local p, s, i, sum; p:=args[1]; s:=args[2]; if s=-1 then return -infinity; fi; if s=0 then return 0; fi; sum:=0; for i from 1 to s do sum:=sum+1/p^i; od; return sum; end: ppart:=proc() local p, n; p:=args[1]; n:=args[2]; return igcd(n, p^n); end: qpart:=proc() local p, n; p:=args[1]; n:=args[2]; return n/igcd(n, p^n); end: logp:=proc() local p, pp; p:=args[1]; pp:=args[2]; if op(ifactors(pp))[2]=[] then return 0; else return op(op(ifactors(pp))[2])[2]; fi; end: summe:=0; m:=logp(p, ppart(p, n)); h:=qpart(p, n); for s from 0 to m do summe:=summe+(p^(m+s+1)-p^(2*s))/(p-1)*(p^(eps(p, s)*n)-p^(eps(p, s-1)*n)); od; a(n):=sigma(h)*summe;
KEYWORD
nonn
AUTHOR
Volker Schmitt (clamsi(AT)gmx.net), Nov 24 2004
STATUS
approved