OFFSET
1,2
REFERENCES
M. Krasner, Le nombre des surcorps primitifs d'un degré donné et le nombre des surcorps métagaloisiens d'un degré donné d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Académie des Sciences, Paris 254, 255, 1962.
LINKS
Xiang-Dong Hou and Kevin Keating, Enumeration of isomorphism classes of extensions of p-adic fields, Journal of Number Theory, Volume 104, Issue 1, January 2004, Pages 14-61.
FORMULA
p:=3; n=f*e; f residue degree, e ramification index if (p, e)=1, let I(f, e):=b/e*Sum_{h=0..e-1} 1/c_h, where b=gcd(e, p^f-1), c_h the smallest positive integer such that b divides (p^c-1)*h a(n) = sum_{f | n} I(f, n/f) There exists a formula, when p divides e exactly and there exists a big formula for some cases when p^2 divides e exactly.
EXAMPLE
a(3)=10. There is the one unramified extension, three ramified cyclic extensions, six extensions with Galoisgroup S_3.
This gives 1+3+3*6=22 extensions (Cf. A100977) in 1+3+6=10 Q_3-isomorphism classes.
MAPLE
# for gcd(e, p)=1 only!
smallestIntDiv:=proc() local b, q, h, i; b:=args[1]; q:=args[2]; h:=args[3]; for i from 1 to infinity do if gcd(b, (q^i-1)*h)=b then return i; fi; od; end:
I0Ffefe:=proc() local p, f1, e1, f, e, i, q, h, summe, c, b; p:=args[1]; f1:=args[2]; e1:=args[3]; f:=args[4]; e:=args[5]; summe:=0; q:=p^f1; b:=gcd(e, q^f-1); for h from 0 to e-1 do c:=smallestIntDiv(b, q, h); summe:=summe+1/c; od; return b/e*summe; end:
I0Ffen:=proc() local p, e1, f1, n, f, e, summe; p:=args[1]; e1:=args[2]; f1:=args[3]; n:=args[4]; summe:=0; for f in divisors(n) do e:=n/f; summe:=summe+I0Ffefe(p, f1, e1, f, e); od; return summe; end:
p:=3; a(n):=I0Ffen(p, 1, 1, n);
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Volker Schmitt (clamsi(AT)gmx.net), Nov 29 2004
STATUS
approved