OFFSET
1,4
COMMENTS
LINKS
B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
FORMULA
W(n,m) = (1/24)*n*m*(3*m*n^2 + 12*n*m^2 - 8*m^2 - 12*n*m + 12*m - 4) if n is even;
W(n,m) = (1/24)*n*m*(3*m*n^2 + 12*n*m^2 - 8*m^2 - 12*n*m + 9*m - 4) if n is odd.
The Wiener polynomial P(n,m;t) of the graph G(n,m) is given in the 3rd Maple program. It gives, for example, P(3,4) = 12*t + 12*t^2 + 12*t^3 + 12*t^4 + 9*t^5 + 6*t^6 + 3*t^7. Its derivative, evaluated at t=1, yields the corresponding Wiener index W(3,4)=222.
EXAMPLE
a(3,1)=27 because in the graph with vertex set {A,B,C,A',B',C'} and edge set {AB, BC, CA, AA', BB', CC'} we have 6 pairs of vertices at distance 1 (the edges), 6 pairs at distance 2 (A'B, A'C, B'A, B'C, C'A, C'B) and 3 pairs at distance 3 (A'B', B'C', C'A'); 6*1 + 6*2 + 3*3 = 27.
The square array starts:
0, 1, 4, 10, 20, 35, 56, 84, ...;
1, 10, 35, 84, 165, 286, 455, 680, ...;
3, 27, 93, 222, 435, 753, 1197, 1788, ...;
8, 60, 196, 456, 880, 1508, 2380, 3536, ...;
MAPLE
W := proc (n, m) if `mod`(n, 2) = 0 then (1/24)*n*m*(3*n^2*m+12*n*m^2-8*m^2-12*n*m+12*m-4) else (1/24)*n*m*(3*n^2*m+12*n*m^2-8*m^2-12*n*m+9*m-4) end if end proc: for n to 10 do seq(W(n-i, i+1), i = 0 .. n-1) end do; # yields the antidiagonals in triangular form
W := proc (n, m) if `mod`(n, 2) = 0 then (1/24)*n*m*(3*n^2*m+12*n*m^2-8*m^2-12*n*m+12*m-4) else (1/24)*n*m*(3*n^2*m+12*n*m^2-8*m^2-12*n*m+9*m-4) end if end proc: for n to 10 do seq(W(n, m), m = 1 .. 10) end do; # yields the first 10 entries of each of rows 1, 2, ..., 10.
P := proc (n, m) if `mod`(n, 2) = 0 then sort(expand(simplify(n*t*(t^m-m*t+m-1)/(1-t)^2+(n*(sum(t^j, j = 1 .. (1/2)*n-1))+(1/2)*n*t^((1/2)*n))*(1-t^m)^2/(1-t)^2))) else sort(expand(simplify(n*t*(t^m-m*t+m-1)/(1-t)^2+n*(sum(t^j, j = 1 .. (1/2)*n-1/2))*(1-t^m)^2/(1-t)^2))) end if end proc: P(3, 4);
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jun 27 2011
STATUS
approved