The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100980 Number of totally ramified extensions over Q_3 with degree n in the algebraic closure of Q_3. 8
 1, 2, 21, 4, 5, 150, 7, 8, 5085, 10, 11, 2892, 13, 14, 10905, 16, 17, 984114, 19, 20, 137739, 22, 23, 472344, 25, 26, 900792441, 28, 29, 5314350, 31, 32, 17537487, 34, 35, 13832346276, 37, 38, 186535713, 40, 41, 602654010, 43, 44, 1408273477425 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES M. Krasner, Le nombre des surcorps primitifs d'un degre donne et le nombre des surcorps metagaloisiens d'un degre donne d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Academie des Sciences, Paris 254, 255, 1962 LINKS Table of n, a(n) for n=1..45. FORMULA a(n)=n*(sum_{s=0}^m p^s*(p^(eps(s)*n)-p^(eps(s-1)*n))), where p=3, n=h*p^m, with gcd(h, p)=1, eps(-1)=-infinity, eps(0)=0 and eps(s)=sum_{i=1 to s} 1/(p^i) EXAMPLE a(4)=4 There are 4 totally ramified extensions both with Galoisgroup D_8, so 2 of them are isomorphic to Q_3[x]/(x^4+3) and two of them are isomorphic to Q_3[x]/(x^4-3) MAPLE p:=3; eps:=proc()local p, s, i, sum; p:=args[1]; s:=args[2]; if s=-1 then return -infinity; fi; if s=0 then return 0; fi; sum:=0; for i from 1 to s do sum:=sum+1/p^i; od; return sum; end: ppart:=proc() local p, n; p:=args[1]; n:=args[2]; return igcd(n, p^n); end: qpart:=proc() local p, n; p:=args[1]; n:=args[2]; return n/igcd(n, p^n); end: logp:=proc() local p, pp; p:=args[1]; pp:=args[2]; if op(ifactors(pp))[2]=[] then return 0; else return op(op(ifactors(pp))[2])[2]; fi; end: summe:=0; m:=logp(p, ppart(p, n)); h:=qpart(p, n); for s from 0 to m do summe:=summe+(p^s*(p^(eps(p, s)*n)-p^(eps(p, s-1)*n)); od; a(n):=n*summe; CROSSREFS Cf. A100976, A100977, A100978, A100979, A100981, A100983, A100984, A100985, A100986. Sequence in context: A331460 A303218 A162536 * A360980 A122509 A024230 Adjacent sequences: A100977 A100978 A100979 * A100981 A100982 A100983 KEYWORD nonn AUTHOR Volker Schmitt (clamsi(AT)gmx.net), Nov 25 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 18 06:32 EDT 2024. Contains 374377 sequences. (Running on oeis4.)