login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303218
A(n,k) is the n-th Fibonacci number with exactly k distinct prime factors; square array A(n,k), n>=1, k>=1, read by antidiagonals.
5
2, 21, 3, 610, 34, 5, 6765, 987, 55, 8, 832040, 46368, 2584, 144, 13, 102334155, 14930352, 196418, 10946, 377, 89, 190392490709135, 4807526976, 267914296, 317811, 3524578, 4181, 233, 1548008755920, 37889062373143906, 86267571272, 701408733, 2178309, 9227465, 17711, 1597
OFFSET
1,1
FORMULA
A(n,k) = A000045(A303217(n,k)).
A001221(A(n,k)) = k.
EXAMPLE
Square array A(n,k) begins:
2, 21, 610, 6765, 832040, 102334155, ...
3, 34, 987, 46368, 14930352, 4807526976, ...
5, 55, 2584, 196418, 267914296, 86267571272, ...
8, 144, 10946, 317811, 701408733, 225851433717, ...
13, 377, 3524578, 2178309, 1134903170, 10610209857723, ...
89, 4181, 9227465, 32951280099, 12586269025, 8944394323791464, ...
MAPLE
F:= combinat[fibonacci]: with(numtheory):
A:= proc() local h, p, q; p, q:= proc() [] end, 2;
proc(n, k)
while nops(p(k))<n do q:= q+1;
h:= nops(factorset(F(q)));
p(h):= [p(h)[], F(q)]
od; p(k)[n]
end
end():
seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
MATHEMATICA
nmax = 12(*rows*);
maxIndex = 200; (* increase if message "part does not exist" *)
nu[n_] := nu[n] = PrimeNu[Fibonacci[n]];
col[k_] := Select[Range[maxIndex], nu[#] == k &];
T = Array[col, nmax];
A[n_, k_] := Fibonacci[T[[k, n]]];
Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Feb 05 2021 *)
CROSSREFS
Column k=3 gives A137563.
Row n=1 gives: A060319.
Sequence in context: A342079 A303216 A331460 * A162536 A377413 A100980
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Apr 19 2018
STATUS
approved