login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137563
Fibonacci numbers with three distinct prime divisors.
4
610, 987, 2584, 10946, 3524578, 9227465, 24157817, 39088169, 63245986, 1836311903, 7778742049, 20365011074, 591286729879, 4052739537881, 17167680177565, 44945570212853, 61305790721611591, 420196140727489673, 1500520536206896083277, 6356306993006846248183
OFFSET
1,1
LINKS
Michel Marcus and Amiram Eldar, Table of n, a(n) for n = 1..83 (terms 1..80 from Michel Marcus)
Ron Knott, Fibonacci Numbers.
FORMULA
a(n) = A000045(A114841(n)). - Michel Marcus, Mar 24 2018
EXAMPLE
The distinct prime divisors of the Fibonacci number 610 are 2, 5 and 61.
The distinct prime divisors of the Fibonacci number 44945570212853 are 269, 116849 and 1429913.
MAPLE
with(numtheory): with(combinat): a:=proc(n) if nops(factorset(fibonacci(n)))= 3 then fibonacci(n) else end if end proc: seq(a(n), n=1..110); # Emeric Deutsch, May 18 2008
MATHEMATICA
Select[Array[Fibonacci, 120], PrimeNu@ # == 3 &] (* Michael De Vlieger, Apr 10 2018 *)
PROG
(PARI) lista(nn) = for (n=1, nn, if (omega(f=fibonacci(n))==3, print1(f, ", "))); \\ Michel Marcus, Mar 24 2018
(GAP) P1:=List([1..110], n->Fibonacci(n));;
P2:=List([1..Length(P1)], i->Filtered(DivisorsInt(P1[i]), IsPrime));;
a:=List(Filtered([1..Length(P2)], i->Length(P2[i])=3), j->P1[j]); # Muniru A Asiru, Mar 25 2018
CROSSREFS
Intersection of A033992 and A000045. - Michel Marcus, Mar 24 2018
Column k=3 of A303218.
Sequence in context: A027514 A246881 A263393 * A301561 A204487 A090177
KEYWORD
nonn
AUTHOR
Parthasarathy Nambi, Apr 25 2008
EXTENSIONS
More terms from Emeric Deutsch, May 18 2008
STATUS
approved