login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fibonacci numbers with three distinct prime divisors.
4

%I #57 Jan 27 2020 08:30:50

%S 610,987,2584,10946,3524578,9227465,24157817,39088169,63245986,

%T 1836311903,7778742049,20365011074,591286729879,4052739537881,

%U 17167680177565,44945570212853,61305790721611591,420196140727489673,1500520536206896083277,6356306993006846248183

%N Fibonacci numbers with three distinct prime divisors.

%H Michel Marcus and Amiram Eldar, <a href="/A137563/b137563.txt">Table of n, a(n) for n = 1..83</a> (terms 1..80 from Michel Marcus)

%H Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fib.html">Fibonacci Numbers</a>.

%H Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibtable.html#100">Prime divisors of Fibonacci numbers</a>.

%F a(n) = A000045(A114841(n)). - _Michel Marcus_, Mar 24 2018

%e The distinct prime divisors of the Fibonacci number 610 are 2, 5 and 61.

%e The distinct prime divisors of the Fibonacci number 44945570212853 are 269, 116849 and 1429913.

%p with(numtheory): with(combinat): a:=proc(n) if nops(factorset(fibonacci(n)))= 3 then fibonacci(n) else end if end proc: seq(a(n),n=1..110); # _Emeric Deutsch_, May 18 2008

%t Select[Array[Fibonacci, 120], PrimeNu@ # == 3 &] (* _Michael De Vlieger_, Apr 10 2018 *)

%o (PARI) lista(nn) = for (n=1, nn, if (omega(f=fibonacci(n))==3, print1(f, ", "))); \\ _Michel Marcus_, Mar 24 2018

%o (GAP) P1:=List([1..110],n->Fibonacci(n));;

%o P2:=List([1..Length(P1)],i->Filtered(DivisorsInt(P1[i]),IsPrime));;

%o a:=List(Filtered([1..Length(P2)],i->Length(P2[i])=3),j->P1[j]); # _Muniru A Asiru_, Mar 25 2018

%Y Cf. A053409, A114841.

%Y Intersection of A033992 and A000045. - _Michel Marcus_, Mar 24 2018

%Y Column k=3 of A303218.

%K nonn

%O 1,1

%A _Parthasarathy Nambi_, Apr 25 2008

%E More terms from _Emeric Deutsch_, May 18 2008