login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137562
Triangular sequence of coefficients from the expansion of p(x,t)=Cos(x*t)/Cos(t).
0
1, 0, 1, 0, -1, 0, 5, 0, -6, 0, 1, 0, 61, 0, -75, 0, 15, 0, -1, 0, 1385, 0, -1708, 0, 350, 0, -28, 0, 1, 0, 50521, 0, -62325, 0, 12810, 0, -1050, 0, 45, 0, -1
OFFSET
1,7
COMMENTS
Row sums are: {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
FORMULA
p(x,t)=Cos(x*t)/Cos(t)=Sum[P(x,n)*t^n/n!,{n,0,Infinity}]; out_n,m=n!*Coefficients(p(x,n)).
EXAMPLE
{1},
{0},
{1, 0, -1},
{0},
{5, 0, -6, 0, 1},
{0},
{61, 0, -75, 0, 15, 0, -1},
{0},
{1385, 0, -1708, 0, 350, 0, -28, 0, 1},
{0},
{50521, 0, -62325,0, 12810, 0, -1050, 0, 45, 0, -1}
MATHEMATICA
p[t_] = Cos[x*t]/Cos[t]; Table[ ExpandAll[n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[ CoefficientList[n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a] Flatten[{{1}, {0}, {1, 0, -1}, {0}, {5, 0, -6, 0, 1}, {0}, {61, 0, -75, 0, 15, 0, -1}, {0}, {1385, 0, -1708, 0, 350, 0, -28, 0, 1}, {0}, {50521, 0, -62325, 0, 12810, 0, -1050, 0, 45, 0, -1}}]
CROSSREFS
Sequence in context: A055953 A165051 A154855 * A021668 A004552 A130415
KEYWORD
tabf,sign
AUTHOR
Roger L. Bagula, Apr 27 2008
STATUS
approved