OFFSET
1,2
COMMENTS
Let a_i(n) = n for n <= 6*i - 1. Thereafter a_i(n) = a_i(n-a_i(n-i)) + a_i(n-a_i(n-2*i)) + a_i(n-a_i(n-3*i)). This sequence is a_2(n).
LINKS
Altug Alkan, Table of n, a(n) for n = 1..10000
Nathan Fox, A Slow Relative of Hofstadter's Q-Sequence, arXiv preprint arXiv:1611.08244 [math.NT], 2016.
A. Isgur, R. Lech, S. Moore, S. Tanny, Y. Verberne, and Y. Zhang, Constructing New Families of Nested Recursions with Slow Solutions, SIAM J. Discrete Math., 30(2), 2016, 1128-1147. (20 pages); DOI:10.1137/15M1040505
MATHEMATICA
nmax = 100;
q[_] = 0; For[n = 1, n <= 11, n++, q[n] = n]; For[n = 12, n <= nmax, n++, q[n] = q[n - q[n-2]] + q[n - q[n-4]] + q[n - q[n-6]]]; Array[q, nmax] (* Jean-François Alcover, Feb 18 2019, from PARI *)
PROG
(PARI) q=vector(100); for(n=1, 11, q[n]=n); for(n=12, #q, q[n] = q[n-q[n-2]] + q[n-q[n-4]] + q[n-q[n-6]]); q
(GAP) a:=List([1..11], i->i);; for n in [12..100] do a[n]:=a[n-a[n-2]]+a[n-a[n-4]]+a[n-a[n-6]]; od; a; # Muniru A Asiru, May 19 2018
(Magma) [n le 11 select n else Self(n-Self(n-2))+Self(n-Self(n-4))+Self(n-Self(n-6)): n in [1..70]]; // Vincenzo Librandi, May 20 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, May 17 2018
STATUS
approved