login
A303222
Total volume of all rectangular prisms with dimensions p, q and (p + q)/2 such that p and q are squarefree, n = p + q and p <= q.
1
0, 1, 3, 14, 15, 42, 56, 136, 144, 230, 220, 612, 611, 665, 675, 1576, 1768, 1836, 1729, 4200, 3528, 4279, 3404, 7524, 6625, 8333, 8289, 14336, 11165, 12675, 10323, 20592, 17688, 23307, 17570, 40410, 27861, 30153, 28899, 52180, 42804, 45864, 55169, 84920
OFFSET
1,3
FORMULA
a(n) = (n/2) * Sum_{i=1..floor(n/2)} i * (n-i) * mu(i)^2 * mu(n-i)^2, where mu is the Möbius function (A008683).
MAPLE
N:= 100: # for a(1)..a(N)
A:= Vector(N):
SF:= select(numtheory:-issqrfree, [$1..N-1]):
for iq from 1 to nops(SF) do
q:= SF[iq];
for ip from 1 to iq do
p:= SF[ip];
n:= p+q;
if n > N then break fi;
A[n]:= A[n] + p*q*(p+q)/2
od
od:
convert(A, list); # Robert Israel, Jun 12 2018
MATHEMATICA
Table[(n/2)*Sum[i (n - i)*MoebiusMu[i]^2 MoebiusMu[n - i]^2, {i, Floor[n/2]}], {n, 80}]
PROG
(Magma) [0] cat [&+[k*(n-k)*(MoebiusMu(k)^2*MoebiusMu(n-k)^2)*n/2: k in [1..Floor(n/2)]]: n in [2..60]]; // Vincenzo Librandi, Apr 21 2018
(PARI) a(n) = n*sum(i=1, n\2, i*(n-i)*moebius(i)^2*moebius(n-i)^2)/2; \\ Michel Marcus, Apr 21 2018
CROSSREFS
Sequence in context: A294997 A354740 A034120 * A037244 A016062 A009401
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 19 2018
STATUS
approved