login
A331460
Irregular triangle read by rows in which row n is the result of iterating the operation f(n) = n/7 if n == 0 (mod 7), otherwise f(n) = 7*(n + ceiling(n/7)), terminating at the first occurrence of 1.
0
1, 2, 21, 3, 28, 4, 35, 5, 42, 6, 49, 7, 1, 3, 28, 4, 35, 5, 42, 6, 49, 7, 1, 4, 35, 5, 42, 6, 49, 7, 1, 5, 42, 6, 49, 7, 1, 6, 49, 7, 1, 7, 1, 8, 70, 10, 84, 12, 98, 14, 2, 21, 3, 28, 4, 35, 5, 42, 6, 49, 7, 1, 9, 77, 11, 91, 13, 105, 15, 126, 18
OFFSET
1,2
COMMENTS
f(n) is the operation C(n,m) = n/m if n == 0 (mod m) and m*(n + ceiling(n/m)) otherwise, where m = 7. The operations in the Collatz (3x + 1) problem (A070165), A330073, and A329263 are C(n,2), C(n,5), and C(n,8) respectively.
Conjecture: For any number n >= 1, there exists a k such that f^{k}(n) = 1, where f^{0}(n) = n and f^{k + 1}(n) = f(f^{k}(n)).
For any numbers n and k such that f^{k}(n) = 1, f^{k + 1}(7*n) = 1 and if n == 0 (mod 7) and n !== 0 or 7 (mod 56), then f^{k + 1}(floor(n/8)) = 1.
LINKS
M. Bruschi, A generalization of the Collatz problem and conjecture, arXiv:0810.5169 [math.NT], 2008.
W. Carnielli, Some Natural Generalizations Of The Collatz Problem, Applied Mathematics E-Notes, 15 (2015), 197-206.
FORMULA
T(n,0) = n and T(n,k + 1) = T(n,k)/7 if T(n,k) == 0 (mod 7), 7*(T(n,k) + ceiling(T(n,k)/7)) otherwise, for n >= 1.
EXAMPLE
The irregular array T(n,k) starts:
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...
1: 1
2: 2 21 3 28 4 35 5 42 6 49 7 1
3: 3 28 4 35 5 42 6 49 7 1
4: 4 35 5 42 6 49 7 1
5: 5 42 6 49 7 1
6: 6 49 7 1
7: 7 1
8: 8 70 10 84 12 98 14 2 21 3 28 4 35 5 42 6 49 ...
9: 9 77 11 91 13 105 15 126 18 147 21 3 28 4 35 5 42 ...
10: 10 84 12 98 14 2 21 3 28 4 35 5 42 6 49 7 1
...
T(8,18) = 1 and T(9,20) = 1.
MATHEMATICA
f[n_] := NestWhileList[If[Mod[#, 7] == 0, #/7, 7 (Floor[#/7] + # + 1)] &, n, # > 1 &]; Flatten[Table[f[n], {n, 10}]]
PROG
(PARI) row(n)=my(N=List([n])); while(n>1, listput(N, n=if(n%7, 7*(n+ceil(n/7)), n/7))); Vec(N)
CROSSREFS
KEYWORD
nonn,easy,tabf
AUTHOR
Davis Smith, Jan 23 2020
STATUS
approved