login
A176802
a(n) = the smallest natural numbers m such that product of harmonic mean of the divisors of n and harmonic mean of the divisors of m are integers.
1
1, 3, 2, 7, 28, 1, 4, 420, 182, 27, 270, 14, 126, 4, 6, 31, 1638, 91, 980, 7, 32, 84, 30240, 15, 248, 63, 10, 1, 8190, 3, 16, 21, 672, 819, 4, 60515, 117800, 420, 840, 84, 55860, 4, 332640, 42, 182, 1638, 30240, 62, 380, 744, 270, 4655, 167400, 5, 54, 60, 980
OFFSET
1,2
COMMENTS
Harmonic mean of the divisors of number n is rational number b(n) = n*A000005(n) / A000203(n) = A099377(n) / A099378(n).
a(n) = 1 for infinitely many n. a(n) = 1 for numbers from A001599: a(A001599(n)) = 1. a(n) = 1 iff A099378(n) = 1.
LINKS
EXAMPLE
For n = 4; b(4) = 12/7, a(4) = 7 because b(7) = 7/4; 12/7 * 7/4 = 3 (integer).
MATHEMATICA
h[n_] := DivisorSigma[0, n]/DivisorSigma[-1, n]; a[n_] := Module[{hn = h[n], k = 1}, While[! IntegerQ[hn * h[k]], k++]; k]; Array[a, 35] (* Amiram Eldar, Mar 22 2024 *)
PROG
(PARI) h(n) = {my(f = factor(n)); numdiv(f)/sigma(f, -1); }
a(n) = {my(hn = h(n), k = 1); while(denominator(hn * h(k)) > 1, k++); k; } \\ Amiram Eldar, Mar 22 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Apr 26 2010
EXTENSIONS
Data corrected and extended by Amiram Eldar, Mar 22 2024
STATUS
approved