login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265009
a(1)=3; for n>1, if n is odd a(n) = spf(Product_{k=1..n-1}(a(k))+1) else a(n) = spf(Product_{k=1..n-1}(a(k))-1), where spf is "smallest prime factor".
0
3, 2, 7, 41, 1723, 5, 14835031, 220078129935929, 241, 23, 79, 101, 23291, 11, 223, 122386298896281959929015788890561251765109069, 38803, 17, 8209, 59, 199, 3340389589, 11527, 13, 47939, 1163, 599, 27198087874669514440553, 181936481, 31, 383, 9623, 739, 33287, 1061, 6493520653, 587, 709, 6548057, 1823, 361789, 20183
OFFSET
1,1
MATHEMATICA
a[1] = 3; a[n_] := a[n] = FactorInteger[ Product[a[k], {k, n - 1}] + If[OddQ@ n, 1, -1]][[1, 1]]; Array[a, {16}] (* Michael De Vlieger, Nov 30 2015 *)
PROG
(PARI) spf(n)=my(f=factor(n)[1, 1]); f
first(m)=my(v=vector(m)); v[1]=3; for(i=2, m,; v[i]=spf((-1)^(i+1)+prod(j=1, i-1, v[j]))); v
CROSSREFS
Sequence in context: A176802 A363400 A230710 * A358656 A021757 A143312
KEYWORD
nonn
AUTHOR
Anders Hellström, Nov 30 2015
EXTENSIONS
a(20)-a(42) from Hans Havermann, Dec 06 2015
STATUS
approved