login
A265010
Numbers which are the product of two tetrahedral numbers.
2
0, 1, 4, 10, 16, 20, 35, 40, 56, 80, 84, 100, 120, 140, 165, 200, 220, 224, 286, 336, 350, 364, 400, 455, 480, 560, 660, 680, 700, 816, 840, 880, 969, 1120, 1140, 1144, 1200, 1225, 1330, 1456, 1540, 1650, 1680, 1771, 1820, 1960, 2024, 2200, 2240
OFFSET
1,3
COMMENTS
This is for the tetrahedral numbers A000292 what A085780 is for the triangular numbers.
The subsequence of numbers with more than one factorization starts 0, 560 (= 65*10 = 1*560), 19600 (= 560*15 = 19600*1), 28560 (=816 *35 = 7140*4), 43680, 292600, 416640, ...
LINKS
FORMULA
{n: n = A000292(i)*A000292(j) for some i,j>=0}.
EXAMPLE
Contains 480=4*120, 560=1*560, 660=4*165, 680=1*680, 700=20*35, ....
MAPLE
# reuses code of A000292
isA265010 := proc(n)
if n = 0 then
return true;
end if;
for d in numtheory[divisors](n) do
if isA000292(d) and isA000292(n/d) then
return true;
end if;
end do:
false;
end proc:
for n from 0 to 4000 do
if isA265010(n) then
printf("%d, ", n);
end if;
end do:
MATHEMATICA
lim = 2240; t = Table[Binomial[n + 2, 3], {n, 0, 10^3}]; f[n_] := Select[{#, n/#} & /@ Select[Divisors[n], # <= Sqrt@ n && MemberQ[t, #] &], MemberQ[t, Last@ #] &]; Select[Range@ lim, Length@ f@ # > 0 &] (* Michael De Vlieger, Nov 30 2015 *)
CROSSREFS
Sequence in context: A310506 A310507 A334115 * A223961 A224391 A224024
KEYWORD
nonn
AUTHOR
R. J. Mathar, Nov 30 2015
STATUS
approved