login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224024
T(n,k)=Number of nXk 0..3 arrays with rows nondecreasing and antidiagonals unimodal
12
4, 10, 16, 20, 100, 64, 35, 400, 1000, 256, 56, 1225, 6796, 10000, 1024, 84, 3136, 32523, 112436, 100000, 4096, 120, 7056, 122523, 772683, 1859020, 1000000, 16384, 165, 14400, 387729, 4002738, 17735200, 30756756, 10000000, 65536, 220, 27225, 1074167
OFFSET
1,1
COMMENTS
Table starts
.......4..........10............20..............35...............56
......16.........100...........400............1225.............3136
......64........1000..........6796...........32523...........122523
.....256.......10000........112436..........772683..........4002738
....1024......100000.......1859020........17735200........120352359
....4096.....1000000......30756756.......403836633.......3491241557
...16384....10000000.....508916456......9186127249......99853876444
...65536...100000000....8420768936....208983591829....2841637297963
..262144..1000000000..139333478144...4754911670136...80738139650660
.1048576.10000000000.2305467501680.108190494364824.2292943314015674
LINKS
FORMULA
Empirical: columns k=1..7 have recurrences of order 1,1,7,10,19,25,41
Empirical: rows n=1..7 are polynomials of degree 3*n for k>0,0,1,2,3,4,5
EXAMPLE
Some solutions for n=3 k=4
..3..3..3..3....1..3..3..3....0..0..0..2....1..1..2..2....0..0..1..1
..0..2..3..3....0..2..3..3....2..2..3..3....0..0..1..2....0..1..3..3
..1..1..1..1....0..0..1..1....0..2..2..3....0..0..2..3....1..1..3..3
CROSSREFS
Column 1 is A000302
Column 2 is A011557
Row 1 is A000292(n+1)
Row 2 is A001249
Sequence in context: A265010 A223961 A224391 * A117111 A310508 A310509
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 30 2013
STATUS
approved