login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224025
Number of 3 X n 0..3 arrays with rows nondecreasing and antidiagonals unimodal.
1
64, 1000, 6796, 32523, 122523, 387729, 1074167, 2679260, 6137666, 13104218, 26368076, 50439449, 92358199, 162782299, 277423483, 458907498, 739147146, 1162327788, 1788617172, 2698724343, 3999445995, 5830352933, 8371784327
OFFSET
1,1
COMMENTS
Row 3 of A224024.
LINKS
FORMULA
Empirical: a(n) = (353/181440)*n^9 + (5/126)*n^8 + (12287/30240)*n^7 + (131/60)*n^6 + (64877/8640)*n^5 + (135/8)*n^4 + (998257/45360)*n^3 + (53933/2520)*n^2 + (3421/252)*n - 2 for n>1.
Conjectures from Colin Barker, Aug 26 2018: (Start)
G.f.: x*(64 + 360*x - 324*x^2 + 1883*x^3 - 3447*x^4 + 4386*x^5 - 3748*x^6 + 2193*x^7 - 825*x^8 + 182*x^9 - 18*x^10) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>11.
(End)
EXAMPLE
Some solutions for n=3:
..2..2..2....1..2..3....0..0..1....2..3..3....1..1..3....3..3..3....2..2..2
..1..2..2....3..3..3....1..1..3....1..1..1....2..2..2....1..1..2....2..3..3
..3..3..3....0..2..2....2..2..2....1..1..3....0..0..0....1..1..2....0..1..1
CROSSREFS
Cf. A224024.
Sequence in context: A224413 A016959 A224392 * A270272 A297612 A000768
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 30 2013
STATUS
approved