login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270272
a(n) = binomial(n+3,n)^3.
1
1, 64, 1000, 8000, 42875, 175616, 592704, 1728000, 4492125, 10648000, 23393656, 48228544, 94196375, 175616000, 314432000, 543338496, 909853209, 1481544000, 2352637000, 3652264000, 5554637011, 8291469824, 12167000000, 17576000000, 25025203125, 35158608576, 48787170264
OFFSET
0,2
LINKS
FORMULA
G.f.: 3F2(4,4,4;1,1;z).
G.f.: (1 + 54x + 405x^2 + 760x^3 + 405x^4 + 54x^5 + x^6)/(x-1)^10.
a(n) = (6 + 11n + 6n^2 + n^3)^3/216.
a(n) = A000292(n+1)^3.
Sum_{n>=0} 1/a(n) = 783/4 - 162*zeta(3). - Jaume Oliver Lafont, Jul 17 2017
Sum_{n>=0} (-1)^n/a(n) = 1296*log(2) + 405*zeta(3)/2 - 4563/4. - Amiram Eldar, Sep 20 2022
MAPLE
A270272:=n->binomial(n+3, n)^3: seq(A270272(n), n=0..50); # Wesley Ivan Hurt, Jul 17 2017
MATHEMATICA
Table[Binomial[n+3, n]^3, {n, 0, 30}]
PROG
(PARI) a(n) = binomial(n+3, n)^3; \\ Michel Marcus, Jul 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved