login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = binomial(n+3,n)^3.
1

%I #32 Sep 20 2022 02:02:08

%S 1,64,1000,8000,42875,175616,592704,1728000,4492125,10648000,23393656,

%T 48228544,94196375,175616000,314432000,543338496,909853209,1481544000,

%U 2352637000,3652264000,5554637011,8291469824,12167000000,17576000000,25025203125,35158608576,48787170264

%N a(n) = binomial(n+3,n)^3.

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-45,120,-210,252,-210,120,-45,10,-1).

%F G.f.: 3F2(4,4,4;1,1;z).

%F G.f.: (1 + 54x + 405x^2 + 760x^3 + 405x^4 + 54x^5 + x^6)/(x-1)^10.

%F a(n) = (6 + 11n + 6n^2 + n^3)^3/216.

%F a(n) = A000292(n+1)^3.

%F Sum_{n>=0} 1/a(n) = 783/4 - 162*zeta(3). - _Jaume Oliver Lafont_, Jul 17 2017

%F Sum_{n>=0} (-1)^n/a(n) = 1296*log(2) + 405*zeta(3)/2 - 4563/4. - _Amiram Eldar_, Sep 20 2022

%p A270272:=n->binomial(n+3,n)^3: seq(A270272(n), n=0..50); # _Wesley Ivan Hurt_, Jul 17 2017

%t Table[Binomial[n+3,n]^3,{n,0,30}]

%o (PARI) a(n) = binomial(n+3,n)^3; \\ _Michel Marcus_, Jul 17 2017

%Y Cf. A000578, A000292, A001249.

%K nonn,easy

%O 0,2

%A _Benedict W. J. Irwin_, Mar 14 2016