login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224392
Number of 3 X n 0..3 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.
1
64, 1000, 6094, 27790, 102232, 319769, 881519, 2196522, 5038720, 10788462, 21789398, 41858498, 76994510, 136338455, 233448747, 387963222, 627730762, 991506308, 1532314870, 2321602662, 3454306716, 5054988261, 7285189791
OFFSET
1,1
COMMENTS
Row 3 of A224391.
LINKS
FORMULA
Empirical: a(n) = (353/181440)*n^9 + (17/560)*n^8 + (9731/30240)*n^7 + (1283/720)*n^6 + (52457/8640)*n^5 + (776/45)*n^4 + (294499/11340)*n^3 + (28837/2520)*n^2 + (8207/126)*n - 18 for n>1.
Conjectures from Colin Barker, Aug 30 2018: (Start)
G.f.: x*(64 + 360*x - 1026*x^2 + 4170*x^3 - 7998*x^4 + 10591*x^5 - 9351*x^6 + 5629*x^7 - 2165*x^8 + 478*x^9 - 46*x^10) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>11.
(End)
EXAMPLE
Some solutions for n=3:
..0..1..1....0..1..1....1..1..2....0..0..1....0..1..1....1..1..3....0..2..2
..2..2..2....0..0..1....2..3..3....2..2..2....2..2..2....1..2..3....1..2..3
..0..2..2....0..0..0....1..1..2....1..3..3....0..0..1....1..3..3....0..3..3
CROSSREFS
Cf. A224391.
Sequence in context: A224162 A224413 A016959 * A224025 A270272 A297612
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 05 2013
STATUS
approved