|
|
A224392
|
|
Number of 3 X n 0..3 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.
|
|
1
|
|
|
64, 1000, 6094, 27790, 102232, 319769, 881519, 2196522, 5038720, 10788462, 21789398, 41858498, 76994510, 136338455, 233448747, 387963222, 627730762, 991506308, 1532314870, 2321602662, 3454306716, 5054988261, 7285189791
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = (353/181440)*n^9 + (17/560)*n^8 + (9731/30240)*n^7 + (1283/720)*n^6 + (52457/8640)*n^5 + (776/45)*n^4 + (294499/11340)*n^3 + (28837/2520)*n^2 + (8207/126)*n - 18 for n>1.
G.f.: x*(64 + 360*x - 1026*x^2 + 4170*x^3 - 7998*x^4 + 10591*x^5 - 9351*x^6 + 5629*x^7 - 2165*x^8 + 478*x^9 - 46*x^10) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>11.
(End)
|
|
EXAMPLE
|
Some solutions for n=3:
..0..1..1....0..1..1....1..1..2....0..0..1....0..1..1....1..1..3....0..2..2
..2..2..2....0..0..1....2..3..3....2..2..2....2..2..2....1..2..3....1..2..3
..0..2..2....0..0..0....1..1..2....1..3..3....0..0..1....1..3..3....0..3..3
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|