login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105939
a(n) = binomial(n+3,3)*binomial(n+6,3).
2
20, 140, 560, 1680, 4200, 9240, 18480, 34320, 60060, 100100, 160160, 247520, 371280, 542640, 775200, 1085280, 1492260, 2018940, 2691920, 3542000, 4604600, 5920200, 7534800, 9500400, 11875500, 14725620
OFFSET
0,1
COMMENTS
a(n) is the number of ordered pairs (A,B) of size 3 subsets of {1,2,...,n+6} such that A and B are disjoint. - Geoffrey Critzer, Sep 03 2013
LINKS
Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
FORMULA
G.f.: 20/(1-x)^7. - Colin Barker, Jun 06 2012
With offset = 6, e.g.f.: exp(x)*x^3/3!*x^3/3!. - Geoffrey Critzer, Sep 03 2013
a(n) = A000292(n+1)*A000292(n+4) = 20*A000579(n+6). - R. J. Mathar, Nov 30 2015
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=0} 1/a(n) = 3/50.
Sum_{n>=0} (-1)^n/a(n) = 48*log(2)/5 - 661/100. (End)
EXAMPLE
If n=0 then C(0+3,0)*C(0+6,3) = C(3,0)*C(6,3) = 1*20 = 20.
If n=8 then C(8+3,8)*C(8+6,3) = C(11,8)*C(14,3) = 165*364 = 60060.
MATHEMATICA
nn=25; f[x_]:=Exp[x](x^3/3!)^2; Range[0, nn]!CoefficientList[Series[a=f''''''[x], {x, 0, nn}], x] (* Geoffrey Critzer, Sep 03 2013 *)
Table[Binomial[n+3, 3]Binomial[n+6, 3], {n, 0, 30}] (* or *) LinearRecurrence[ {7, -21, 35, -35, 21, -7, 1}, {20, 140, 560, 1680, 4200, 9240, 18480}, 30] (* Harvey P. Dale, Mar 09 2022 *)
CROSSREFS
Sequence in context: A236988 A358865 A134382 * A054389 A374161 A253003
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, Apr 27 2005
EXTENSIONS
More terms from Geoffrey Critzer, Sep 03 2013
STATUS
approved