OFFSET
1,1
COMMENTS
Sequence suggested by Puzzle 419 in Carlos Rivera's The Prime Puzzles & Problems Connection.
For n=33, the search for terms k that satisfy 33*d(k)*sopf(k)=sigma(k), without being greater than a(32), gives 21070, 25585, 30702, 36120, 41710, 49256, 52269, 68906, 74692, 92785, 95702, 111342, 117626, 383086 with no other terms up to 10^9. So this sequence might well be complete. - Michel Marcus, Oct 02 2019
I confirm that the solutions for n=33 listed above are complete, thus the sequence stops at n=32. - Max Alekseyev, Sep 18 2024
LINKS
Carlos Rivera, Puzzle 419. Four SOPF questions, Prime Puzzles.
FORMULA
a(n) > a(n-1): n*A000005(a(n))*A008472(a(n)) = A000203(a(n)). - R. J. Mathar, Nov 16 2007, Jun 24 2009
MAPLE
A008472 := proc(n) local divs, i ; if n = 1 then 0; else divs := ifactors(n)[2] ; add( op(1, i), i=divs) ; fi ; end: A134382 := proc(n) option remember ; local k, kmin ; if n = 1 then kmin := 1 ; else kmin := procname(n-1)+1 ; fi ; for k from kmin do if numtheory[sigma](k) = n* numtheory[tau](k)*A008472(k) then RETURN(k) ; fi ; od: end: for n from 1 to 30 do print( A134382(n)) ; od: # R. J. Mathar, Nov 16 2007, Jun 24 2009
MATHEMATICA
sopf[1] = 0; sopf[n_] := Total[FactorInteger[n][[All, 1]]]; a[n_] := a[n] = For[k = If[n == 1, 1, a[n-1] + 1], True, k++, If[DivisorSigma[1, k] == n*DivisorSigma[0, k]*sopf[k], Return[k]]]; Table[Print[a[n]]; a[n], {n, 1, 32}] (* Jean-François Alcover, Sep 12 2013 *)
PROG
(PARI) lista(nn) = {lasta = 2; for (n=1, nn, k = lasta; while ((f = factor(k)) && (n*numdiv(k)*sum(j=1, #f~, f[j, 1]) != sigma(k)), k++); print1(k, ", "); lasta = k; ); } \\ Michel Marcus, Feb 25 2016
CROSSREFS
KEYWORD
nonn,full,fini
AUTHOR
Enoch Haga, Oct 23 2007
EXTENSIONS
Edited by R. J. Mathar, Nov 16 2007
A-number in formula and Maple program corrected by R. J. Mathar, Jun 24 2009
a(32) from R. J. Mathar, Feb 05 2010
full,fini keywords added by Max Alekseyev, Sep 18 2024
STATUS
approved