login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105937
Infinite square array read by antidiagonals: T(m, 0) = 1, T(m, 1) = m; T(m, k) = (m - k + 1) T(m+1, k-1) - (k-1) (m+1) T(m+2, k-2).
9
1, 1, 0, 1, 1, -2, 1, 2, -2, 0, 1, 3, 0, -12, 36, 1, 4, 4, -24, 24, 0, 1, 5, 10, -30, -60, 420, -1800, 1, 6, 18, -24, -216, 720, -720, 0, 1, 7, 28, 0, -420, 420, 5040, -30240, 176400, 1, 8, 40, 48, -624, -960, 14400, -40320, 40320, 0, 1, 9, 54, 126, -756, -3780, 22680, 22680, -589680, 3764880, -28576800
OFFSET
0,6
REFERENCES
V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.
FORMULA
See A127080 for e.g.f.
EXAMPLE
Array begins
1 1 1 1 1 1 1 1 1 1 ... (A000012)
0 1 2 3 4 5 6 7 8 9 ... (A001477)
-2 -2 0 4 10 18 28 40 54 70 ... (A028552)
0 12 24 30 24 0 48 126 240 396 ... (A126935)
36 24 60 216 420 624 756 720 396 360 ... (A126958)
...
MAPLE
T:= proc(n, k) option remember;
if k=0 then 1
elif k=1 then n
else (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2)
fi; end:
seq(seq(T(n-k, k), k=0..n), n=0..12); # G. C. Greubel, Jan 28 2020
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, n, (n-k+1)*T[n+1, k-1] - (k-1)*(n+1)* T[n+2, k-2]]]; Table[T[n-k, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 28 2020 *)
PROG
(PARI) T(n, k) = if(k==0, 1, if(k==1, n, (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2) )); \\ G. C. Greubel, Jan 28 2020
(Magma)
function T(n, k)
if k eq 0 then return 1;
elif k eq 1 then return n;
else return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2);
end if; return T; end function;
[T(n-k, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 28 2020
(Sage)
@CachedFunction
def T(n, k):
if (k==0): return 1
elif (k==1): return n
else: return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2)
[[T(n-k, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 28 2020
CROSSREFS
A127080 gives another version of the array.
Sequence in context: A122864 A140084 A243747 * A035146 A035216 A258587
KEYWORD
sign,tabl
AUTHOR
Vincent v.d. Noort, Mar 24 2007
EXTENSIONS
More terms added by G. C. Greubel, Jan 28 2020
STATUS
approved