login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105940
a(n) = binomial(n+5, n)*binomial(n+8, 5).
1
56, 756, 5292, 25872, 99792, 324324, 924924, 2378376, 5621616, 12388376, 25729704, 50791104, 95938752, 174350232, 306211752, 521694096, 864913896, 1399125420, 2213431220, 3431347920, 5221616400, 7811703900, 11504509380, 16698853080, 23914406880, 33821804016
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
G.f.: -28*(x+2)*(2*x+1) / (x-1)^11. - Colin Barker, Jan 28 2013
From Amiram Eldar, Sep 01 2022: (Start)
Sum_{n>=0} 1/a(n) = 580367/1764 - 100*Pi^2/3.
Sum_{n>=0} (-1)^n/a(n) = 74537/588 - 1280*log(2)/7. (End)
EXAMPLE
a(0) = C(0+5,0)*C(0+8,5) = C(5,0)*C(8,5) = 1*56 = 56
a(6) = C(6+5,6)*C(6+8,5) = C(11,6)*C(14,5) = 462*2002 = 924924.
MAPLE
with(combinat); for i from 0 to 25 do print(i, numbcomb(i+5, i)*numbcomb(i+8, 5)); end; # Jim Nastos, Oct 26 2005
MATHEMATICA
a[n_] := Binomial[n + 5, 5] * Binomial[n + 8, 5]; Array[a, 25, 0] (* Amiram Eldar, Sep 01 2022 *)
CROSSREFS
Cf. A062145.
Sequence in context: A278604 A201098 A190419 * A175602 A227059 A285155
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, Apr 27 2005
EXTENSIONS
More terms from Jim Nastos, Oct 26 2005
STATUS
approved