login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105943
a(n) = C(n+7,n) * C(n+10,7).
1
120, 2640, 28512, 205920, 1132560, 5096520, 19631040, 66745536, 204787440, 576438720, 1507608960, 3700494720, 8593371072, 19004570640, 40244973120, 81980500800, 161264274600, 307350735120, 569168028000, 1026681084000, 1807851474000, 3113521983000
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
FORMULA
G.f.: (24*(-5*x^4-35*x^3-63*x^2-35*x-5))/(x-1)^15. - Harvey P. Dale, Nov 14 2011
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 114905939/6480 - 5390*Pi^2/3.
Sum_{n>=0} (-1)^n/a(n) = 14336*log(2)/9 - 3577279/3240. (End)
EXAMPLE
If n=0 then C(0+7,0)*C(0+10,7) = C(7,0)*C(10,7) = 1*120 = 120.
If n=6 then C(6+7,6)*C(6+10,7) = C(13,6)*C(16,7) = 1716*11440 = 19631040.
MAPLE
A105943:=n->binomial(n+7, n)*binomial(n+10, 7): seq(A105943(n), n=0..40); # Wesley Ivan Hurt, Apr 18 2017
MATHEMATICA
Table[Binomial[n+7, n]Binomial[n+10, 7], {n, 0, 30}] (* Harvey P. Dale, Nov 14 2011 *)
PROG
(Python)
A105943_list, m = [], [3432, -3432, 1320, 0]+[120]*11
for _ in range(10**2):
A105943_list.append(m[-1])
for i in range(14):
m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
CROSSREFS
Cf. A062145.
Sequence in context: A032180 A000553 A126232 * A219945 A219834 A250651
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, Apr 27 2005
EXTENSIONS
More terms from Harvey P. Dale, Nov 14 2011
STATUS
approved