OFFSET
0,1
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
FORMULA
G.f.: (24*(-5*x^4-35*x^3-63*x^2-35*x-5))/(x-1)^15. - Harvey P. Dale, Nov 14 2011
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 114905939/6480 - 5390*Pi^2/3.
Sum_{n>=0} (-1)^n/a(n) = 14336*log(2)/9 - 3577279/3240. (End)
EXAMPLE
If n=0 then C(0+7,0)*C(0+10,7) = C(7,0)*C(10,7) = 1*120 = 120.
If n=6 then C(6+7,6)*C(6+10,7) = C(13,6)*C(16,7) = 1716*11440 = 19631040.
MAPLE
A105943:=n->binomial(n+7, n)*binomial(n+10, 7): seq(A105943(n), n=0..40); # Wesley Ivan Hurt, Apr 18 2017
MATHEMATICA
Table[Binomial[n+7, n]Binomial[n+10, 7], {n, 0, 30}] (* Harvey P. Dale, Nov 14 2011 *)
PROG
(Python)
A105943_list, m = [], [3432, -3432, 1320, 0]+[120]*11
for _ in range(10**2):
A105943_list.append(m[-1])
for i in range(14):
m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, Apr 27 2005
EXTENSIONS
More terms from Harvey P. Dale, Nov 14 2011
STATUS
approved