login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = binomial(n+5, n)*binomial(n+8, 5).
1

%I #23 Sep 01 2022 07:13:34

%S 56,756,5292,25872,99792,324324,924924,2378376,5621616,12388376,

%T 25729704,50791104,95938752,174350232,306211752,521694096,864913896,

%U 1399125420,2213431220,3431347920,5221616400,7811703900,11504509380,16698853080,23914406880,33821804016

%N a(n) = binomial(n+5, n)*binomial(n+8, 5).

%H T. D. Noe, <a href="/A105940/b105940.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).

%F G.f.: -28*(x+2)*(2*x+1) / (x-1)^11. - _Colin Barker_, Jan 28 2013

%F From _Amiram Eldar_, Sep 01 2022: (Start)

%F Sum_{n>=0} 1/a(n) = 580367/1764 - 100*Pi^2/3.

%F Sum_{n>=0} (-1)^n/a(n) = 74537/588 - 1280*log(2)/7. (End)

%e a(0) = C(0+5,0)*C(0+8,5) = C(5,0)*C(8,5) = 1*56 = 56

%e a(6) = C(6+5,6)*C(6+8,5) = C(11,6)*C(14,5) = 462*2002 = 924924.

%p with(combinat); for i from 0 to 25 do print(i,numbcomb(i+5,i)*numbcomb(i+8,5)); end; # _Jim Nastos_, Oct 26 2005

%t a[n_] := Binomial[n + 5, 5] * Binomial[n + 8, 5]; Array[a, 25, 0] (* _Amiram Eldar_, Sep 01 2022 *)

%Y Cf. A062145.

%K easy,nonn

%O 0,1

%A _Zerinvary Lajos_, Apr 27 2005

%E More terms from _Jim Nastos_, Oct 26 2005