login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126958
Define an array by d(m, 0) = 1, d(m, 1) = m; d(m, k) = (m - k + 1) d(m+1, k-1) - (k-1) (m+1) d(m+2, k-2). Sequence gives d(n,4).
2
36, 24, -60, -216, -420, -624, -756, -720, -396, 360, 1716, 3864, 7020, 11424, 17340, 25056, 34884, 47160, 62244, 80520, 102396, 128304, 158700, 194064, 234900, 281736, 335124, 395640, 463884, 540480, 626076, 721344, 826980, 943704, 1072260, 1213416, 1367964
OFFSET
0,1
REFERENCES
V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.
FORMULA
a(n) = (n+3)*(n+1)*(n^2 -10*n +12).
From G. C. Greubel, Jan 29 2020: (Start)
G.f.: 12*(3 -13*x +15*x^2 -3*x^3)/(1-x)^5.
E.g.f.: (36 -12*x -36*x^2 +x^4)*exp(x). (End)
MAPLE
seq( (n+3)*(n+1)*(n^2 -10*n +12), n=0..40); # G. C. Greubel, Jan 29 2020
MATHEMATICA
Table[(n+3)*(n+1)*(n^2 -10*n +12), {n, 0, 40}] (* G. C. Greubel, Jan 29 2020 *)
PROG
(PARI) vector(41, n, my(m=n-1); (m+3)*(m+1)*(m^2 -10*m +12)) \\ G. C. Greubel, Jan 29 2020
(Magma) [(n+3)*(n+1)*(n^2 -10*n +12): n in [0..40]]; // G. C. Greubel, Jan 29 2020
(Sage) [(n+3)*(n+1)*(n^2 -10*n +12) for n in (0..40)] # G. C. Greubel, Jan 29 2020
(GAP) List([0..40], n-> (n+3)*(n+1)*(n^2 -10*n +12)); # G. C. Greubel, Jan 29 2020
CROSSREFS
A row of A105937.
Sequence in context: A196044 A196041 A074155 * A070726 A083819 A358173
KEYWORD
sign,easy
AUTHOR
Vincent v.d. Noort, Mar 21 2007
STATUS
approved