login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104677
a(n) = binomial(n+3,3)*binomial(n+8,3).
2
56, 336, 1200, 3300, 7700, 16016, 30576, 54600, 92400, 149600, 233376, 352716, 518700, 744800, 1047200, 1445136, 1961256, 2622000, 3458000, 4504500, 5801796, 7395696, 9338000, 11687000, 14508000, 17873856, 21865536, 26572700, 32094300, 38539200, 46026816
OFFSET
0,1
FORMULA
From R. J. Mathar, Nov 29 2015: (Start)
a(n) = A000292(n+1)*A000292(n+6) = 4*A033276(n+6).
G.f.: 4*(-14+14*x-6*x^2+x^3)/(x-1)^7. (End)
From Amiram Eldar, Aug 30 2022: (Start)
Sum_{n>=0} 1/a(n) = 109/4900.
Sum_{n>=0} (-1)^n/a(n) = 48*log(2)/35 - 2291/2450. (End)
EXAMPLE
If n=0 then C(0+3,0+0)*C(0+8,3) = C(3,0)*C(8,3) = 1*56 = 56.
If n=8 then C(8+3,8+0)*C(8+8,3) = C(11,8)*C(16,3) = 165*560 = 92400.
MATHEMATICA
a[n_] := Binomial[n+3, 3] * Binomial[n+8, 3]; Array[a, 30, 0] (* Amiram Eldar, Aug 30 2022 *)
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {56, 336, 1200, 3300, 7700, 16016, 30576}, 40] (* Harvey P. Dale, Jan 06 2023 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, Apr 22 2005
STATUS
approved