login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215042
a(n) = F(8*n)/L(2*n) with n >= 0, F = A000045 (Fibonacci numbers) and L = A000032 (Lucas numbers).
2
0, 7, 141, 2576, 46347, 831985, 14930208, 267913919, 4807525989, 86267568688, 1548008749155, 27777890017577, 498454011832896, 8944394323670071, 160500643816049277, 2880067194369984080, 51680708854856144763, 927372692193073296289
OFFSET
0,2
COMMENTS
This provides the second example for the Riordan transition matrix R mentioned in a comment to A078812 (here the column called there n=1 is relevant).
FORMULA
a(n) = 2*F(2*n) + 1*5*F(2*n)^3, n >= 0 (for the coefficients 2, 1, see the second row of the Riordan matrix R = A078812 (with offset [0,0])).
a(n) = F(6*n) - F(2*n), n >= 0, (from the preceding line and a 5*F(2*n)^3 formula given in a comment on the signed triangle A111418, with l->2*n, n->1; see also 5*A215039).
O.g.f.: x*(7-6*x+7*x^2)/((1-3*x+x^2)*(1-18*x+x^2)). The partial fraction decomposition and recurrences lead to the preceding formula.
MATHEMATICA
Table[Fibonacci[8 n]/LucasL[2 n], {n, 0, 17}] (* Bruno Berselli, Aug 31 2012 *)
LinearRecurrence[{21, -56, 21, -1}, {0, 7, 141, 2576}, 20] (* Harvey P. Dale, Jul 18 2021 *)
PROG
(Magma) [Fibonacci(8*n)/Lucas(2*n): n in [0..17]]; // Bruno Berselli, Aug 31 2012
CROSSREFS
Cf. A001906 (for F(4*n)/L(2*n) = F(2*n)), 24*A215043 (for F(12*n)/L(2*n)).
Sequence in context: A306628 A302912 A191956 * A221267 A070074 A051397
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 31 2012
STATUS
approved