login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070074
a(n)= 2F2(n+1, n+2; 1, 2; 1) *n! *(n+1)! /exp(1), where 2F2 is the generalized hypergeometric function.
0
1, 7, 141, 5305, 313333, 26405391, 2986704817, 434460962041, 78746410575945, 17355333316259863, 4561636814725190101, 1407386778722787214617, 503024214435970044854461
OFFSET
0,2
FORMULA
a(n) is the n-th power moment of a positive function on a positive half-axis: a(n)=int(x^n*2*hypergeom([], [1, 2], x)*x^(1/2)*BesselK(1, 2*sqrt(x))/exp(1), x=0..infinity), n=0, 1...
Recurrence: (8*n^2 - 19*n + 9)*a(n) = (24*n^4 - 25*n^3 - 50*n^2 + 36*n + 1)*a(n-1) - (n-1)^2*(24*n^4 - 105*n^3 + 119*n^2 - 10*n - 24)*a(n-2) + (n-3)*(n-2)^2*(n-1)^3*(8*n^2 - 3*n - 2)*a(n-3). - Vaclav Kotesovec, Jul 05 2018
MATHEMATICA
Table[HypergeometricPFQ[{n+1, n+2}, {1, 2}, 1] *n! *(n+1)! /E, {n, 0, 20}] (* Vaclav Kotesovec, Jul 05 2018 *)
CROSSREFS
Sequence in context: A191956 A215042 A221267 * A051397 A322064 A179569
KEYWORD
nonn
AUTHOR
Karol A. Penson, Apr 22 2002
STATUS
approved