login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070075
Stirling transform of A021009.
1
1, 2, 9, 57, 464, 4593, 53381, 711056, 10665071, 177698377, 3253933294, 64917524367, 1400923403957, 32503510579738, 806599849548101, 21313355891736741, 597326671763101944
OFFSET
0,2
LINKS
FORMULA
In Maple notation, a(0)=1, a(n)= sum(stirling2(n, k)*k!*LaguerreL(k, -1), k=1..n), n=1, 2... . E.g.f.: exp((exp(x)-1)/(2-exp(x)))/(2-exp(x))
a(n) ~ exp(1/(4*log(2)) - 3/4 + sqrt(2*n/log(2)) - n) * n^(n + 1/4) / (2^(5/4) * (log(2))^(n + 3/4)). - Vaclav Kotesovec, Nov 13 2017
MATHEMATICA
Flatten[{1, Table[Sum[StirlingS2[n, k]*k!*LaguerreL[k, -1], {k, 1, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Nov 13 2017 *)
CROSSREFS
Cf. A021009.
Sequence in context: A175912 A218824 A111545 * A124405 A300343 A141787
KEYWORD
nonn
AUTHOR
Karol A. Penson, Apr 22 2002
STATUS
approved